Welcome to Navixy Developer Documentation

Navixy is a GPS tracking platform developed by SquareGPS company. Here you can find
information about integration of 3rd party solutions with the Navixy platform, APl and
technical documentation for developers and partners.

All calls and methods will allow you to develop an application that pulls all the
necessary information from the platform. By combining and processing the information
you receive you will be able to cover the needs of your customers and partners by
providing them with a customized app. More personalized solution can attract more
customers and increase their loyalty.

Last update: November 1, 2021

https://www.navixy.com/
https://squaregps.com/

Getting started

How to read this documentation

The documentation presented in several sections that are responsible for its own part
of the Navixy platform:

* General -introductory section. Explains how to work with the documentation and
how you can help us improve it. It also has information regarding translation of the
platform into different languages.

* Backend API - describes all calls for working with information presented to users
or sub-users in the Ul. Tracking, reports, tasks, and more.

* Panel-API - describes all calls for working with information presented to
administrators in the admin panel. Information about devices, tariff plans, users,
and more.

* Frontend - provides information on customizing the welcome page and additional

Weblocator and Delivery plugins.

You can switch between sections using menu on the top of the page. On the right side
of the menu, you can find a button for downloading a PDF version of documentation and
a link to our github page.

All files of the section are presented in menu on the left. Once you click on one of them
- it will display file contents. On the right side of page you can find file's internal menu.
Use it for quick navigation between parts of the file.

The documentation has three types of files: documents, guides and API calls.

Documents and guides are divided into semantic parts, the first of which is an
introduction that briefly describes what the document is about.

API calls have the following structure:

* Introduction - API call description and general information about its purpose.

* The structure of the object - describes an object that is used in the calls.
(optional)

* API-actions -the API base call and actions. All APIl-actions also divided into
several points:

* Description of the API-actions - describes purpose of the call.

* Requirements - what rights are required to use the APl-action. (optional)

* Parameters table - contains list of parameters for selected API call, their
description and data type.

* Examples - example of a correct API call with all parameters listed. Examples
can be useful for troubleshooting. You can also copy them and simply
substitute the data with your own. Each example has a copy button in the upper
right corner. If the parameters don't contain special characters, they are
presented in two variants: POST and GET. If the parameters include special
characters, only POST examples given.

* Response - an example of successful response from the server with description
of every field.

* Errors - specific errors for this APIl-action. General error list applies to all calls.

Limits

To maintain the stability of the system for all users, the platform has a limit of 50
requests/second per user and per IP address (if your app works with multiple users).

Get involved

You can really help to improve this documentation or localizations of Navixy Platform.

If the translation of the user interface into your language is missing or contains errors,
you can make or fix the localization on the CrowdIn platform yourself. Read here how to
doit.

Current documentation may also contain errors or white spots. All of it is available in
the public domain on GitHub, and you can independently contribute in its correction or
addition. Read here how to do it.

Useful things

It is convenient to use postman for testing work with API.

Last update: February 20, 2023

../get-involved/
../localizations/
https://crowdin.com/
../localizations/contributing/
https://github.com/SquareGPS/navixy-api/
../get-involved/
../postman/

Get involved

If you notice an inaccuracy, mistake, typo or want to supplement the information in this
documentation, then you can help us to improve it. All of this documentation is
available in the public domain on GitHub.

There are several ways:

1. Creating an issue with a detailed description of the problem.

2. Editing a single page in a browser.

3. Manually creating a fork and doing multiple commits before creating a pull request.
4. Installing and editing documentation locally on your PC.

In each of these cases, a GitHub account is required. If you don't want to register on
GitHub, you can just contact us with any convenient way.

Easy way

On each page in the upper right corner of the text top there is a link with a picture of a
pencil :material-pencil:. After clicking on this link, you will be asked to create a fork of
the repository (if you have not done this before).

You need to fork this repository to propose changes.
Sorry, you're not able to edit this repository directly— you need to fork it and propose your changes from there instead.

P Fork this repository

Learn more about forks

Creating a fork done with one green button. After that, the edit form with page source
code will open.

. For correct edit of page, please read the introduction into Mkdocs.

After editing the page, you must fill out a description of what you have done.

https://github.com/SquareGPS/navixy-api/
https://github.com/SquareGPS/navixy-api/issues/new
../contacts/

Propose changes

Update index.md

Add an optional extended description...

Propose changes Cancel

Submitting a change will write it to a new branch in your fork, so you can send a pull
request. We will review your pull request and accept it in the main branch.

Thus, this method is only suitable for simple edits on one page. There is another way to
create pull requests to fix multiple pages at once.

Second way

This method allows you to make several edits on different pages before proposing them
in a pull request.

1. Create a fork of the repository if it has not been created yet. (Just click the "Fork"
button in the upper right corner.)

Go to the created fork and find the file you are interested in.

Open the file and click the edit button.

2.
3.
4. Make edits and commit with a clear description of the changes.
5. Edit other files of interest to you in the same way.

6.

Go to the start page of the fork and click on the "Pull request” button.

After review and pull request will be merged, and you can drop a fork.

Hard way

This method involves installing the Git, IDE, Python and Material for MkDocs on yours
PC.

1. Install Python 3.

https://github.com/SquareGPS/navixy-api/
https://squidfunk.github.io/mkdocs-material
https://www.python.org/downloads/

2. Install Git client.
3. Install an IDE, for example IntelliJ IDEA (Community edition would be enough).

4. Create a fork of the repository and cloning it to local project. In IDEA: File -> New -

> Project from version control;
5. Install mkdocs-material and other dependencies. In console:
cd /path/to/project
mkdir venv

python -m venv ./venv
pip3 install -r requirements.txt

6. Start the documentation server locally. In console:

cd /path/to/project

source venv/bin/activate

Windows: \venv\Scripts\activate.bat

mkdocs serve --dirtyreload
7. To check that the server has started, open in a browser: http://localhost:8000
8. Create a local git branch in project.
9. Make changes in documentation and test it in browser. Read the introduction.

10. Commit and push changes. Please, use English in commit message.

11. Create a Pull Request (PR) on GitHub from your fork. Please, use English in PR
description.

12. After the PR has been reviewed and merged to upstream you can remove branch
and rebase a fork to the upstream.

Introduction into Mkdocs

This documentation built on mkdocs engine and mkdocs-material theme. Firstly, read
how to layout and write your Markdown source files for an overview of how to write
docs.

Menu

The menu formed using the plugin awesome-pages automatically. To set the desired
page order in the menu, use the file .pages.yml in directory. For example:

title: Backend API
nav:

https://git-scm.com/downloads
https://www.jetbrains.com/idea/
https://github.com/SquareGPS/navixy-api/
https://squidfunk.github.io/mkdocs-material
http://localhost:8000
https://mkdocs.org
https://squidfunk.github.io/mkdocs-material
https://mkdocs.org/user-guide/writing-your-docs
https://github.com/lukasgeiter/mkdocs-awesome-pages-plugin

- getting-started.md
- how-to

- resources

- websocket

title sets the name for menu section. nav: sets the sub-items order.

Meta information

Each page must have meta information section at the beginning. Required fields: title
and description. For example:

title: Get involved
description: Get involved into improving documentation and
translations of the Navixy Platform

Title will be displayed in menu and in browser title.

Headers

The information on each page should be structured. On pages of the same type, the
structure should be uniform.

Example

API resource page structure:

Resource name

Resource description.

Object name

Object and its description
API actions

Path: "/path/to/resource/ .
method1

Method description.

Parameters

| name | description | type | restrictions |

| param1l | description. | int | “[1..100]°, not null |
| param2 | description. | boolean | not null |

Examples
=== "cURL"
*shell
curl -X POST 'https://api.navixy.com/v2/resource/sub_resource/
action' \
-H 'Content-Type: application/json' \

-d '{"param1": "valuel", "param2": "value2", "hash":
"abaa75587e5c59¢c32d347da438505fc3" }'

=== "HTTP GET"

https://api.navixy.com/v2/resource/sub_resource/action?
paraml=valuel¶m2&hash=a6aa75587e5c59¢c32d347da438505fc3
Response
" json
{ "success": true }
Errors
Special error codes.

method2

. Please note

If the response or structure has comments it is necessary to write these comments
separately in the form of a list below.

For real example see /user and source.

Last update: November 20, 2023

../../backend-api/resources/commons/user/
https://raw.githubusercontent.com/SquareGPS/navixy-api/master/docs/backend-api/resources/commons/user/index.md

Contacts

If you have questions, write to us in any way convenient for you.
You can call us or send email: navixy.com/contact.
Follow us in the social networks:

* GitHub

* LinkedIn

+ Twitter

+ Facebook
* Instagram

* Youtube

Last update: September 6, 2022

https://www.navixy.com/contact/
https://github.com/SquareGPS/navixy-api/
https://linkedin.com/company/navixy/
https://twitter.com/Navixy
https://facebook.com/NavixyGPS
https://instagram.com/navixygps
https://youtube.com/channel/UCL0u39pv4NlECAmFOZCZ-nw

Zapier

Automation is simply setting something up to run automatically. Automation is all
around you, even if you don't realize it. Take your smartphone, for example. You receive
alerts whenever you receive a text message, voice mail, or email.

The heart of any automation boils down to a simple command: WHEN and DO. "When
this happens, do that." Even the most complex automation can be broken down into this
simple command.

Zapier is a tool that helps you automate repetitive tasks between two or more apps—no
code necessary. When an event happens in one app, Zapier can tell another app to
perform (or do) a particular action.

A Zap is an automated workflow that tells your apps to follow this simple command:
"When this happens, do that." Every Zap has a trigger and one or more actions. A trigger
is an event that starts a Zap, and action is what your Zap does for you. When a Zap
runs, each action it completes counts as one task.

Zapier is not for free but offers a free trial. Check their pricing before you start.
Example use cases you can achieve:

+ Send a GPRS command / activate output on schedule;
+ Send a Slack message on a tracker event;

« Deactivate tracker on an event.

Create your first Zap

First, make sure you have signed up for a Zapier account.

Before you create a Zap, it's helpful to think about what you're trying to accomplish. For
example, let's say you have shared equipment that shouldn't work outside a particular
geofence. Every time you receive a notification about the geofence leaving you can
open an account and switch output responsible for its work. But it is much more
appreciated being done automatically, isn't it?

You can create a rule in the Ul or make a new one with APIs.

Open the invitation link to get access to the Navixy triggers and actions. Without this
link actions will be not in search results. Click on the "Accept invite & Build a Zap"
button to proceed.

https://zapier.com/app/billing/plans
https://zapier.com/sign-up/
https://www.navixy.com/docs/user/web-interface-docs/rules-docs/create-rule/
../../../backend-api/how-to/use-rules/
https://zapier.com/developer/public-invite/150604/ce501cb480b559ee2b402283f0c8faa9/

Here you will see a dashboard with all your Zaps. You can create, update, switch on/off
your Zaps.

#
= Zapier

+
. Zaps Home
- Q Filter zaps [selectzaps [Delete [E3 Move to folder

o PRIVATE FOLDERS O *" *’ Name your Zap off

Owined by Artem P. - Updeted ausap 19, 2022
(-] a rome

SHARED FOLDERS O |V| ‘ Name your Zap . off

Owned by Artem P. + Updated susaps 19, 2022
° B * Test Zap for New Event Trigger from Navixy Version

O 1.0.0 . off
@ Upgrade for shared folders Owned by Artem P. + Updated pexaps 15, 2021

Start collaborating faster with Zapier
0 for Teams. 0 * Test Zap for Set Output Create from Navixy Version . off
. . 1.0.0
Start your free 14-day trial
Owined by Artem P. + Updeted aexabps 15, 2021
Learn more

B

@ Trash 3

Let's create a Zap. In a new window we should choose our app. Specify Navixy into
search line and choose it from results.

1. Trigger

- ? Learn more
A trigger is an event that starts your Zap

App Event
E PP : : 7y | Schedule
Start the Zap when something happens in an app ©
Start the Zap every day, hour,
(Q Navixy

J or a custom interval

3¢ Navixy (1.0.0) @EINTEED

@ RSS

Start the Zap when an RSS
feed updates

& Webhook [=010

Start the Zap when another
app sends a webhook

After it, you will see the Zap's body that contains triggers and actions. Start with a
trigger and choose your first in a dropdown. We need to get all new geofence exit

events for all user's trackers on the platform and search for new of them constantly. So

let's choose a New Tracker Event.
The program will request you connect an account.

Trigger

. 1. New Event in Navixy (1.0.0)

v Choose app & event <

Choose account

Navixy (1.0.0) account: (required) Manage connected accounts

LA

@ Choose an account... .

Choose...

[Q Search j

@ Navixy (1.0.0) Private

+ Connect a new account “

7. saz zausn:

Insert a User Session Key. Go to Navixy Admin Panel -> Users -> User -> click Get
session key in the right menu. Read about limitations of User Session Keys. Also, you
can create an API key for one user and make as many Zaps as you want with it. At the

same time API keys will not expire.

There you should choose the correct server where your account is located. If your user
account ID starts with 1000xxxx - it is the US. Otherwise, choose the EU server.

Set trigger

The next step is to configure a trigger. To create a simple Zap we recommend you use

the New Tracker Event.

https://developers.navixy.com/backend-api/resources/commons/api-keys/
../../../backend-api/how-to/get-api-key/

v Choose app & event

v Choose account

Set up trigger

TrackerIDs 123 (required)
669673

Specify tracker IDs (not IMEI) to search for events, separate with comma. E.g. 123456, 654321. To find the id: Admin Panel

= Trakers -= ID column or Platform -= Tracking -> Show device Info -> Copy id from the URL

Event types (required)

outzone

Event type to monitor in quotes. E.g. "online”, "offline”. Take values from the list: inzone outzone sos battery_off
lowpower poweroff poweron sensor_inrange sensor_outrange input_change output_change task_completed task_delayed
task_failed task_arrived task_in_progress checkpoint_completed checkpoint_delayed checkpoint_failed checkpoint_arrived
checkpoint_in_progress route_completed route_faulty route_failed task_form_submitted gps_lost gps_recover Contact
support for the full list

Timezone 123 (required)

5
Enter the time zone of your Navixy account (e.g. -3)

Query Interval 123 (required)

15

Interval in minutes. Look for events inside of this interval.

C Refresh fields

. Specify tracker IDs .

You can find it in the admin panel. Admin Panel > Trakers -> ID column

Home Users Trackers Plans Activation codes ‘

Select trackers from list

859129 Test M Connection lost #248527

Or in the user inteface. Platform -> Tracking -> Show device Info -> Copy ID from the URL

.navixy.com/#/online/trackers/859129/details

Main group (1/4)

TestM

Widgets

. Set event types

You can choose one type or several. Below is the list of all types:

* inzone

outzone

offline

online

* SOS

battery_off

lowpower

poweroff

poweron

sensor_inrange

sensor_outrange

input_change

output_change

task_completed

task_delayed

task_failed

task_arrived

task_in_progress

checkpoint_completed

checkpoint_delayed

checkpoint_failed

checkpoint_arrived

checkpoint_in_progress

route_completed

route_faulty

route_failed

+ task_form_submitted
« gps_lost

« gps_recover

+ idle_start

- idle_end

service_task_soon

service_task_expired

detach

attach

bracelet_close

bracelet_open

obd_plug_in

obd_unplug

strap_bolt_cut

strap_bolt_ins

light_sensor_bright

light_sensor_dark

vibration_start

vibration_end

lock_opened

lock_closed

case_opened

case_closed

g_sensor

force_location_request

alarmcontrol

crash_alarm

door_alarm

hood_alarm

ignition

parking

security_control

gsm_damp

- info

odometer_set

« tracker_rename

« harsh_driving

+ auto_geofence_in

+ auto_geofence_out

* inroute

* outroute

+ speedup

« track_end

« track_start

« work_status_change

« call_button_pressed

« driver_changed

« driver_identified

« driver_not_identified

« driver_absence

« driver_enter

« driver_distraction_started
« driver_distraction_finished
+ external_device_connected
+ external_device_disconnected
« fueling

« drain

« forward_collision_warning
+ headway_warning

« lane_departure

« peds_in_danger_zone

» tsr_warning

« peds_collision_warning

+ checkin_creation

* tacho

« antenna_disconnect

« check_engine_light

+ location_response

+ backup_battery_low

« fatigue_driving

« fatigue_driving_finished

« proximity_violation_start

« proximity_violation_end

* no_movement

« gps_damp

+ cruise_control_on

« cruise_control_off

« over_speed_reported

+ distance_breached

+ distance_restored

+ excessive_driving_start
- excessive_driving_end
- excessive_parking

+ excessive_parking_finished

- state_field_control

. Specify account's timezone .

Account time zones should be specified like the next example:

« timezone is UTC+3 then specify 3;

+ timezone is UTC-3 then specify -3.

. Set a time interval for searching .

Here the platform expects to get query intervals in minutes. Your Zap will look for events
inside them.

For example, 15 means - check events for the last 15 minutes before this Zap requested
info. It should be the same as the frequency of your Zap requests.

Set action

Now it is time to create an action. When conditions are specified Zapier wants to know -
what action should be used.

There are two output actions and one for sending the GPRS command.

. Special control for some models

There are different safety output change scenarios on some models that prevent output
switching when there is a fast speed. For example, SECO on Teltonika devices. Other
devices have specific commands that can switch output even on speed. You can
contact the manufacturer to get the correct configurations, or you can use another
action: "Send GPRS command" (if it is a device with a special command for output
switch on speed).

We will describe here all actions to show how you can configure them. Choose only one
that is convenient for your device and use case.

. Set output

Is an action for devices that can change one output at a time. For example, enable
immobilizer on the first output.

Action
3:% 2. Navixy (1.0.0) o

Choose app & event

4 Navixy (1.0.0) Change
Action Event (required)
[[choose an event =]

CREATE

Set Output

Sets an output for device. Some trackers support Sij"“ut:-ut command, other Set OutputS command

Set Outputs

Sets outputs for device. Some trackers support Set Qutput command, other Set QutputS command.

Send GPRS Command

Send GPRS command to device

Here we should choose an account again. It is already in the dropdown. The next what
we should do is to set up action settings.

Action
2. Set Output in Navixy (1.0.0) o

v Choose app & event

v Choose account

Set up action

Tracker 123 (required)

664348

Specify tracker ID (not IMEI) of the device for output switching. To find the id: Admin Panel > Trakers -> ID column or
Platform -> Tracking -> Show device Info -> Copy id from the URL

Output 123 (required)

1
Output number to change

Switch outputto ® O (required)
(3:(— Enable @ - J

enable or disable output state

C Refresh fields

Zapier asks for the next information to proceed:

 Tracker ID - described in triggers;
+ Output - output number to change;

« Switch output to - enable or disable output state.

. Set outputs .

Is an action for devices that can change outputs with one general command. If we need
to change one particular output state on such devices we should specify a new state for
one and previous states for others.

Action
'):$ 4. Set Outputs in Navixy (1.0.0) o

Choose app & event

3£ Navixy (1.0.0)

Change
Action Event (required)
[Set Outputs| (] J
CREATE
Set OQutput

Sets an output for device. Some trackers support Set Output command, other Set OutputS command

Set Outputs

Sets outputs for device. Some trackers support Set Output command, other [gt OutputS command.

Send GPRS Command

Send GPRS command to device

Here we should choose an account again. It is already in the dropdown. The next what
we should do is to set up action settings.

Action
3:& 2. Set Outputs in Navixy (1.0.0) ©

v Choose app & event (]

v Choose account (V]

Set up action

trackerID 123 (required)

676714

Specify tracker ID (not IMEI) of the device for output switching. To find the id: Admin Panel > Trakers -> ID column or
Platform -> Tracking -> Show device Info -> Copy id from the URL

output states (required)

true false false

Write needed output states. E.g. true,false, false

C Refresh fields

Zapier asks for the next information from us:

+ Tracker ID - described in triggers;

+ Output states - desired states of all digital outputs, e.g. true,true,false means output
1 is on, output 2 is on, output 3 is off.

. Send GPRS command .

Is an action to send any command to a device. In our example, we use the command to
switch digital output 1 on the Teltonika FMB920 device.

Action
3:(' 2. Navixy (1.0.0) ©

Choose app & event

2 Navixy (1.0.0) Change
Action Event (required)
([choose an event = J

CREATE

Set Output

Sets an output for device. Some trackers support Set Qutput command, other Set OutputS command.

Set Outputs
Sets outputs for device. Some trackers support Set Output command, other Set QutputS command.

Send GPRS Command
Send GPRS command to device @

Here we should choose an account again. It is already in the dropdown. The next what
we should do is to set up action settings.

Action
3:% 2. Send GPRS Command in Navixy (1.0.0) o
v Choose app & event]
v Choose account L]

Set up action

TrackeriD123 (required)

668794

Specify tracker ID (not IMEI) of the device to send command. To find the id: Admin Panel > Trakers -> ID column or
Platform -> Tracking -> Show device Info -> Copy id from the URL

Command (required)
setdigout 10

Command text to send over GPRS

C' Refresh fields

Zapier requests to specify the next info:

« Tracker ID - described in triggers;

« Command - a model's protocol-related command to send over GPRS.

Results

The Zap is ready to work. Turn it on to start and try to out of the zone with your
equipment. It will not work outside. Your device should be online to receive a command.

. Output switching

Switching off the engine on a moving vehicle is dangerous. Navixy carries no
responsibility for such action.

Last update: June 28, 2023

Languages

Navixy already supports many languages and provides an easy way to add a new
language:

Arabic
Croatian
Dutch
English
French
Georgian
German
Greek
Indonesian
Korean
Mongolian
Polish
Portuguese
Portuguese (Brazil)
Romanian
Russian
Sinhala
Spanish
Tamil

Thai
Turkish
Ukrainian
and others...

In all Navixy products both left-to-right and right-to-left languages are supported. The
following Navixy projects are maintained currently:

+ Desktop web interface

* Mobile web interface

+ Java backend and API

+ Tracker mobile app for iOS /Android

+ Viewer mobile app for iOS / Android

Become a contributor and help us to translate Navixy products to a new language or
improve the existing language packs.

Last update: November 1, 2021

contributing/
contributing/
contributing/

Translate Navixy

Localizing Navixy products to the language of your choice is simple and handy. Add a
new language or update an existing translation in a few easy steps. Then you can
translate Navixy to your language.

All translations are done through the crowdin online translation service, developed
specifically for team-based translation projects.

Getting started

First of all you should contact your manager, to obtain Crowdin account associated with
Navixy Crowdin project.

There are two ways to localize navixy platform:

« Crowdin In-context translation

* Translate via Crowdin Ul

Crowdin In-context translation (only Web Ul)
Crowdin In-context translation is the most handy way to translate Navixy Web Ul.

To launch Crowdin In-context service you should use special link:
https://demo.navixy.com/?locale=ach#/login

You should see crowdin authorization dialog.

http://crowdin.com

After authorization standard Navixy Ul will appear in a special translation mode. Click
on a little icon near each text item

:@Ji sommes-nous!

opens translation dialog

4 Translating to French

SOURCE STRING [HIDDEN] [DUPLICATE |

Demo login

¥ CONTEXT

Connexion démo

== [] O cCp
FRENCH TRANSLATIONS

Connexion démo
= " yassirmojahid 3 years ago

8 TM AND MT SUGGESTIONS

e (& Connexion démo
== Navixy's TM, 100% match

OTHER LANGUAGES

Translate via Crowdin Ul

Crowdin Ul is a most powerful way to work with translations in Navixy, and the only way

< >

if you want to translate not Backend and Mobile apps.

Translations in crowdin organized into several directories:

Transiate Al (8] - O

1. Common Server properties, APl server properties, Tracking server properties, SMS

server properties - translation strings for backend (Mainly for Reports, SMS and

Email notifications)

2. Future Web Ul, Legacy Web Ul - translation strings for Navixy Web Ul.

3. android-client, android-tracker, navixy-tracker-ios, navixy-viewer-ios - translation

strings for mobile apps.

Each entry in each directory contains strings for translation, displayed in translation

screen

= FRENCH s LEGACY WEB UI

§ under developement

& please wak, command is applying

& el taniff plan. Incontect billng is posaile. P

& The feature is unavalable on your plan

. Show

please walt, command is applying

CONTEXT v (OF

Merci de patienter, 13 COmMmande o3t en cour's denéoution

© 0 <
QA 1550ES)

First letters in the source text and tansiation have a different case.
FRENCH TRANSLATIONS +

Merci de patienter, & ©5t en cours

Karien Garouche (kgarcuche) 4 y

Merci de patienter. L 052 00 Cours

patroling 3 yoars 55

n-» SAVE
)

oo e %@
a B L)

If you have some problems with translation feel free to ask questions in comments.

Translations delivery

Usually it takes about a week to deploy translations to production environment.

In case of standalone installations and mobile apps this time is linked to standalone/
mobile app release schedule.

If you translate Navixy to the new language, after translation you should notify your
manager that your translation is complete. Your manager will ask development team to
add new language to the platform. In the other case translations of the existing
language will be delivered to production automatically.

Last update: December 26, 2022

Postman

There are many tools that could be used to work with API requests. From simple input
to browser's address line or cmd tool to more complex software. One of our personal
favorites is Postman application. Postman is a collaboration platform for API
development. It can be used for a variety of purposes ranging from simple request
testing to creating and maintaining your own APIs for your own software.

For our purposes we will only review their API client.

Your first request

Postman API client allows you to easily send various API requests and helps you fill out
parameters without worrying that you will miss a quote or bracket. This can be
especially handy when working with large requests.

1. Select a request method:

W [R wpon [Bulder “ @ s O B £ @9

e m o

Each API request uses an HTTP method. The most common methods for Navixy API
are GET and POST. GET methods retrieve data from an API. POST sends new data to
an API.

https://www.postman.com/

2. Enter base request URL with the resource and sub-resource. In our example we will
use user/auth and tracker/list requests. Base request URLs are:

* For EU server - https://api.eu.navixy.com/v2/

* For US server - https://api.us.navixy.com/v2/

3. Click on the Params button, and you will see a table for key and value input:

MW [rener mpon [Bulder RO s O & £ @

—em
History
— GEY ot e e @ Sevs
N Po—— .

We will only ever need to fill 2 fields - Key (parameter name from documentation)
and value. For user/auth request, we have 2 keys that should be transmitted - login
and password.

You can see that once we fill out the parameter name - it is automatically added to
the request line.

MW [Runer mpen [Bulder CAROS s O & £ @

Similarly, with values and additional parameters:

W [Rener g [Bulder " @ s O B £ @

MW ([ruser wmpen [Bu'lder RO son O B £ @O

- e
K y
ce = ‘ placom P— “
Koy e evis g lian
;

4. Press send, and you will see the reply, already split and highlighted for easier

reading
MW [mener mpon [Bu lder LARO s O & £ @O
No Erv e
=
k Y
T - [
noy e ecrpton
g »
9
TRAATI TITINONSDIINT 08I0 QT %A,
SerCess™ ! tree

In this case, we have received a hash that should be copied and user for future
requests.

Example: tracker/list request

oy Vehu Comrgeas

Working with parameters

If your request has multiple parameters listed - you can easily enable and disable,

preventing errors:

Bullder

® rupinapinvicom @

History
GET htp//aplnavixy.com/api-v2/tracker/listThash=f759065b2207e04e8a5004407¢2064878labelse[Test"] Params Save

Key Value Description

hash 75
labels [Test?)

130865790338",
osnavixytracker_xgps®

History of requests

On the left side of postman application a history of your requests is stored. If you made
errors or oo many changes and just want to go back to the old version or re-execute the
request made in the past - a simple double-click will open a request in a new tab:

P, o
NeWw [[) Rusner impor [} Bullder w @ s O B £ @
No Environmen
® mmpuispinwdxycom @ .
History
GET hetp://apl.naviny.com/apiv2/trackerNistThash=f75006562207e04e80850460712064578Iobels=(Test] Params m Save
v Today Yy vae Description
ha Me oan =t
labels
Authorization
Bedy m
Preny =

Examples in documentation

You could see that our APl documentation has both structure of the request and
examples. You can copy them and paste in postman. In this case all parameters will be
automatically separated to strings for more convenient edit.

Untitled Request

GET v http(s)//api.navixy.com/api-v2/apn_settings/read?hash=your_hash&phone=phone_numt m Save v

Params @ Authorization Headers (7) Body Pre.request Script Tests Settings

Query Params

KEY VALUE DESCRIPTION
hash your_hash
phone phone_number

B()dy Cookies HMeaders (9) Test Results tat 200K 7 230ms ¢ 6438 Save Response v

cURL examples in Postman

You can copy the cURL examples from our documentation and import them into
Postman for later use. Copy an example, open an import tab and choose the Raw text.
Then paste our example here and save the file.

Import

File Folder Link Rawtext Coderepository New APl Gateway New
—

Paste raw text

curl -X POST 'https://api.navixy.com/v2/user/auth' \
-H ‘Content-Type: application/json’ \
-d '{"login": "user@email.com”, "password": "12€14Y$"}'|

How to install

To get the latest version of the Postman app, visit the download page and click
"Download" for your platform.

Last update: December 20, 2022

https://postman.com

Navixy Backend API

General

Each API resource semantically corresponds to some entity, for example: geofences,
rules, objects, etc. The API calls for CRUD and other operations with these entities have
similar names regardless the resource used: list, read, create, delete.

Standard workflow (example)

Let us describe the standard workflow for APl developer using very simple and most
common example — requesting the track points data:

1. Determine URL to API calls.

2. Obtain hash of an API key

3. Get objects lists with tracker/list.

4. Get track lists with track/list.

5. Get the track itself: track/read.

. You can get an API key via user's web interface. This is the recommended way
instead of getting user session hash.

In other words, to start working with API, the developers should have API call
description (as provided herein), and know user login and password.

APl base URL

Depending on the physical location of the platform it will be:

* https://api.eu.navixy.com/v2 for European Navixy ServerMate platform.
* https://api.us.navixy.com/v2 for American Navixy ServerMate platform.
* https://api.your_domain for the self-hosted (On-Premise) installations.

For example, to make user/auth API call on the European Navixy ServerMate, you
should use the URL:

../how-to/get-api-key/
../how-to/get-tracker-list/
../how-to/get-tracker-list/

https://api.eu.navixy.com/v2/user/auth

API calls format

Notation used in this doc:
/resource/sub_resource/action(parameteri1,parameter2, [parameter3])

Which means that you should use the following URL:
[api_base_url]/resource/sub_resource/action

with named parameters:

* parameter
* parameter2

+ parameter3 is optional
Parameters can be passed in the:

* HTTP POST application/json with JSON content, recommended

* HTTP POST application/x-www-form-urlencoded with parameters in the request
body

* HTTP GET - not recommended, should be used only for idempotent requests with
small parameters size

HTTP POST application/json

$ curl -X POST '[api_base_url]/resource/sub_resource/action' \
-H 'Content-Type: application/json' \
-d "{"parami1": "valuel", "hash":
"abaa75587e5¢c59c32d347da438505fc3"}"

HTTP POST application/x-www-form-urlencoded

$§ curl -X POST '[api_base_url]/resource/sub_resource/action' \
-d 'paraml=value’' \
-d 'hash=a6aa75587e5c59¢c32d347da438505fc3"’

HTTP GET

$ curl '[api_base_url]/resource/sub_resource/action?
paraml=valuel1&hash=a6aa75587e5c59¢c32d347da438505fc3"

. Hash of an API key is required for most API calls to identify user.

../how-to/get-api-key/

Typical actions:

« list - list all resource entities with IDs and minimum additional info
+ read - read one entity by ID
* update — update one entity by ID

+ delete — delete one entity by ID

Request and response format

To make API call, for example, resource/action send POST request to
[api_base_url]/resource/action/

The response will be given with application/json content type, even errors (see error
handling). Response fields and object structure is specific to API call.

Ensuring compatibility

Our API evolves over time, and new methods and JSON object fields are being added.
We are doing our best to ensure our APl remains backwards compatible with legacy API
clients. However, you must ensure that any JSON object fields which are not supported
by your app are ignored, and that in event if new JSON fields are returned, your
application will not break. Also, sometimes, to reduce response size, JSON fields which
are NULL are omitted. Your JSON parser should handle missing JSON fields as if they
were NULL.

. For example

To read user's tracker list use [api_base_url]/tracker/list/?
hash=abaa75587e5c59c32d347da438505fc3 and get response:

{
"success": true,
"list": [
{
"id": 560,

"label": "GV55",
"group_id": 12,
"avatar_file_name": "super-avatar.jpg",
"source": {
"id": 2915,
"model": "gv55lite",
"blocked": false,
"tariff_id": 2,
"phone”: "111",
"status_listing_id": 333,
"creation_date": "2014-02-02",
"device_id": "888888888888888"
}
"tag_bindings": [
{
"tag_id": 1,
"ordinal”: 1
}
I,

"clone": true

"id": 2799,
"label": "2799",
"group_id": 0,
"source": {
"id": 2692,
"model”: "m7",
"blocked": true,
"tariff_id": 5,
"phone": null,
"status_listing_id": null,
"creation_date": "2006-02-10",
"device_id": "333333333333333"
bo
"tag_bindings": [
{
"tag_id": 9,
"ordinal”: 3

../how-to/get-tracker-list/

Or error if hash is wrong:

{
"success": false,
"status": {

"code": 4,
"description”: "User or API key not found or session ended"
}
}
HTTP codes

If success is true, HTTP code is always 200 0K (unless otherwise stated). If there is
an error, HTTP code is 400 BAD REQUEST (may vary depending on error type) (see

error).

Authorization and access levels

Unless otherwise noted, every API call requires a valid API Key hash (A string containing
32 hexadecimal characters) that can be passed (in order of lookup priority):

1. As hash parameter of the request body (root-level property for application/

json).
2. As hash parameter of the HTTP query string.

3. As value of the HTTP header Authorization in the following form:
Authorization: NVX SessionHashValue

Following is pseudo-grammar that illustrates the construction of the Authorization
request header:

ApiKeyValue = 32 hexademical characters;
Authorization = "NVX" + " " + ApiKeyValue ;

Read how to get an API key.

Data types

* bool, boolean - logical type: true of false.

* byte - signed 8 bits integerinrange [-128 .. 128].

../how-to/get-api-key/

+ short -signed 16 bits integer in range [-32,768 .. 32,767].

* int, integer - signed 32 bits integer in range [-2,147,483,648
2,147,483,647] .

+ long - signed 64 bits integer in range [-9,223,372,036, 854,775,808 ..
9,223,372,036,854,775,807] .

« float - signed 32 bits float number
[3.40282347 x 18738, 1.40239846 x 107-45].

* double - signed 64 bits float number [1.7976931348623157 x 10308,
4.9406564584124654 x 10+-324] .

* string - string literals.

* enum - string literals from predefined set.

« date/time - is a string containing date/time in defined formats.

* local_time — is a string containing local time in HH:mm:ss format.

+ location — is json object contains geographical coordinates, e.g.
{"lat": 34.178868, "lng": -118.599672}

* locale - stringin format language[_country], where language is ISO 639
alpha-2 language code, and country is ISO 3166 alpha-2 country code, e.g. en_US
or ru. Userinterface support only language codes: ru, en, es, ar, de, pt, ro

and uk .

Date/time formats
Date/time type can be represented with formats:

* yyyy-MM-dd HH:mm:ss format (in user's timezone), default

+1SO 86071 yyyy-MM-dd'T'HH:mm:ssZZ
To use IS0 8601 date/time format you should pass true to (in order of lookup priority):

1. iso_datetime parameter of the request body (root-level property for application/
json).
2. iso_datetime parameter of the HTTP query string.

3. HTTP header NVX-ISO-DateTime

https://www.loc.gov/standards/iso639-2/php/English_list.php
https://www.loc.gov/standards/iso639-2/php/English_list.php
https://en.wikipedia.org/wiki/ISO_3166-2#Current_codes
https://en.wikipedia.org/wiki/ISO_8601

JSON request body parameter

$ curl -X POST '[api_base_url]/resource/sub_resource/action’
-H 'Content-Type: application/json' \

-d '{"iso_datetime": true, "hash":
"abaa75587e5c59c32d347da438505fc3"}"

form request parameter

$ curl -X POST '[api_base_url]/resource/sub_resource/action’
-d 'iso_datetime=true' \
-d 'hash=a6aa75587e5c59c32d347da438505fc3"

HTTP Header

$ curl -X POST '[api_base_url]/resource/sub_resource/action'
-H 'Content-Type: application/json' \

-H 'NVX-ISO-DateTime: true' \

-d '{"hash": "abaa75587e5c59c32d347da438505fc3"}"

response example with fixed offset date/time :

{
"success": true,
"user_time": "2014-07-09T07:50:58+05:00",
"list": [
{
"type": "odometer",
"value": 100500.1,
"update_time": "2014-063-06T13:57:00+05:00"
}
]
}

response example with UTC date/time :

{
"success": true,
"user_time": "2014-07-09T702:50:587",
"list": [
{
"type": "odometer",
"value": 100500.1,
"update_time": "2014-063-06T17:57:00Z2"
}
]
}

Error handling

\

\

\

If an error occurs, API returns special error response. You can also detect error by
checking HTTP response code. If it is not 260 0K, you should parse and handle

response body as an error response. In the event of error occurs, the response will be in
the following format:

{
"success": false,
"status": {
"code": 1,
"description": "Database error"
}
}

where code is one on the error codes.

Error codes

Default HTTP code is 400. Common error codes (should be handled for all API calls) are
1-100 and resource or action specific errors are 101-300.

code description

1 Database error 500
2 Service Auth error 403
3 Wrong hash

4 User or API key not found or session ended

5 Wrong request format

6 Unexpected error 500
7 Invalid parameters

8 Queue service error, try again later 503
9 Too large request 412
11 Access denied 403

12 Dealer not found

description

13 Operation not permitted 403
14 Database unavailable 503
15 Too many requests (rate limit exceeded) 429
101 In demo mode this function is disabled 403
102 Wrong login or password

103 User not activated

111 Wrong handler

112 Wrong method

201 Not found in database

202 Too many points in zone

203 Delete entity associated with

204 Entity not found 404
206 Login already in use

207 Invalid captcha

208 Device blocked 403
209 Failed sending email

210 Geocoding failed

211 Requested time span is too big

212 Requested limit is too big

213

214

215

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

description

Cannot perform action: the device is offline

Requested operation or parameters are not supported by the
device

External service error

List contains nonexistent entities

Malformed external service parameters

Not allowed for clones of the device

Unknown device model

Device limit exceeded

Plugin not found

Phone number already in use

Device ID already in use

Not allowed for this legal type

Wrong ICCID

Wrong activation code

Not supported by sensor

Requested data is not ready yet

Not supported for this entity type

Entity type mismatch

Input already in use

403

403

403

404

409

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

description

No data file

Invalid data format

Missing calibration data

Feature unavailable due to tariff restrictions

Invalid tariff

Changing tariff is not allowed

New tariff does not exist

Not allowed to change tariff too frequently

Cannot change phone to bundled sim. Contact tech support.

There were errors during content validation

Device already connected.

Duplicate entity label.

New password must be different

Invalid user ID

Entity already exists

Wrong password

Operation available for clones only

Not allowed for deleted devices

Insufficient funds

402

403

404

403

409

403

403

403

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

description

Device already corrupted

Device has clones

Cannot save file

Invalid task state

Location already actual

Registration forbidden

Bundle not found

Payments count not comply with summary

Payments sum not comply with summary

Entity has external links

Entries list is missing some entries or contains nonexistent
entries

No change needed, old and new values are the same

Timeout not reached

Already done

Cannot perform action for the device in current status

Too many entities

Over quota

Invalid file state

Too many sensors of same type already exist

500

403

404

403

403

403

403

402

code description

271 File over max size 413

Last update: January 29, 2024

How to

Working with APl might seem hard at first, but the goal of our documentation is to
assist you in this process and make it more approachable.

Our "How to" section has step-by-step examples of working with the Navixy API.

From initial step of obtaining an API key hash to more complicated operations like
retrieving a list of devices, tracks or creating reports. Using API and scripting you will be
able to develop applications that not only satisfy your customer's needs but also help
you make your business more profitable.

* How to get hash of an API key.

* How to register a device.

* How to get tracker list.

* How to get track points.

+ How to get sensors and counters data.

* How to use virtual sensors and get information from them.

* How to create geofences.

« How to create points of interest (POls) and use custom fields with them.

* How to use rules.

* How to work with notifications.

* How to get push notifications.

* How to create/assign the tasks and optimize route.

* How to create forms for tasks.

* How to work with statuses.

* How to send commands to device via GPRS.

* How to obtain report's information.

* How to use tags.

* How to use service works.

* How to use driver journals.

* How to use BLE beacons along with trackers and Navixy APIs.

Last update: August 1, 2023

get-api-key/
how-to-register-a-device/
get-tracker-list/
get-track-points/
getting-measurements-and-counters-from-devices/
virtual-sensors/
how-to-create-geofences/
work-with-POIs/
use-rules/
how-to-work-with-notifications/
getting-pushes/
how-to-work-with-tasks/
forms-creation/
how-to-work-with-statuses/
how-to-send-commands-to-device/
how-to-obtain-information-from-report/
tags-usage/
service-works-exploitation/
driver-journals-usage/
tracking-stationary-objects/

Obtaining hash of an API Key

"Hash", "Session key" or "API Key" is a randomly generated string that is used to verify
and authenticate actions. The hash of APl key must be passed in most API calls.

. You can get an API key in the user's web interface. This is the recommended way
instead of user session hash.

To get an API key, you can create it in the user's web interface. If it needs to be done
automatically, you must first get a user's session hash, because creating a new API key
using the another API key is not available.

You can get the user's session hash by user/auth call with credentials of a user:

https://api.navixy.com/v2/user/auth?
login=user_login&password=user_password

The response will be like this:

"success": true,
"hash": "882fb3334065d006df0d5a3f410115e92"

Where resulting user's session hash is 882fb333485d066dfed5a3f410115e92 (just an
example, you will get a different hex string).

After that, you need to get a list of API keys or create a new one using the /api/key/
create call with obtained user's session hash:

https://api.navixy.com/v2/api/key/list?
hash=882fb3334065d006df0d5a3f410115e92&title=Integration+Key

The response will be like this:

{
"success": true,
“value": {
"hash": "c915157ac483e7319b0b257408bcb4e1",
"create_date": "2021-10-29 12:00:36",
"title": "Integration Key"
}

You must pass API Key hash value with most API calls along other parameters required
to make the call. Otherwise, you will get an error response:

{
"success": false,
"status": {
"code": 3,
"description”: "Wrong hash"
}
}

Whenever you see such response, it means that you did not pass hash value properly.

Last update: August 1, 2023

How to register a device

Instruction about device registration on the platform step by step.

It is possible to activate any GPS tracking device listed in the supported models list.
Every model will be shown with all integrated input types, available rule types and other
necessary information. We need to make several steps to get the device registered on
the platform.

Step 1. Check that the platform support registering device model with list_models API
call.

Step 2. Check all plugins available for the user with plugin/list request.
We are interested in the next plugin IDs that are used for registration:

+ 44 - device registration with optional activation code.
+ 37 - device registration with mandatory activation code.
+ 35 - mobile app registration with optional activation code.

* 68 - mobile app registration with mandatory activation code.
Full information about activation codes and for what purposes they needed is here.

Step 3. Register the device using the tracker/register action.

Tracker registration

There is information about tracker registration with plugins 44 and 37.

Common parameters

* phone - device's phone number with country code and without + sign.

« apn_name - this is the apn that depends on your device's SIM GSM carrier. Max
length 40.

« apn_user - it depends on your device's SIM too. Max length 40, can be empty.

+ apn_password - this parameter depends on the GSM carrier as two previous
parameters. Max length 40, can be empty.

+ device_id - device's ID. What ID type is used in your device can be found with
list_models action and ID type field

https://www.navixy.com/docs/admin-panel-docs/plans/activation-codes/

+ model - name of the model in the platform's code. It can be found in the list_models
request too.

« label - label for the device.

« group_id - tracker group ID, 0 if tracker does not belong to any group. The specified
group must exist. See group/list.

* plugin_id - what parameter ID to use. It must be listed in available plugins list for the

user.

« activation_code - optional string with activation code. Not necessary for plugin 44
and mandatory for plugin 37.

Using plugin ID 44

For example, we have a Teltonika FMB 140 device with IMEI 986575154632586. SIM's
phone is 999999999969 and APN settings are internet, user, and passwd. It is
supported on the platform and user has the plugin 44. Activation codes are optional for
this plugin. We don't need to register it to the special group, so the group_id will be 0.
The label should be as my car's plate number T571TO for convenience.

The API call will be the next:

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/register"' \

-H 'Content-Type: application/json' \

-d '{"hash": "abaa75587e5c59c32d347da438505fc3", "label":
"T571T0", "group_id": @, "plugin_id": 44, "model": "telfmb140",
"phone": "999999999969", "device_id": "986575154632586",
"apn_name": "internet", "apn_user": "user", "apn_password":
"passwd"}'

HTTP GET

https://api.navixy.com/v2/tracker/register?
hash=a6aa75587e5¢c59¢32d347da438505fc3&1abel=T571T0&group_id=0&plugin_i

After sending the platform will respond with the next information:

{

"success" :true,
"value" :{
"id" :833389,
"label" :"T571T0",
"group_id":@,
"source" :{
"id" :526383,
"device_id" :"986575154632586",
"model" :"telfmb140",
"blocked" :false,

"tariff_id":12163,

"phone" :"999999999969",
"status_listing_id" :null,
"creation_date":"20621-06-03",
“tariff_end_date" :"2021-06-17"

}

"clone" :false

« Tracker object fields described here.

Using plugin ID 37

In this example we need to specify an activation code during the registration. All other
information will be the same as for the plugin 44. In this case, we have empty apn_user
and apn_password to show the usage.

The API call will be the next:

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/register' \

-H 'Content-Type: application/json' \

-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "label":
"T5717T0", "group_id": @, "plugin_id": 37, "activation_code":
"6045325592", "model": "telfmb1408", "phone": "999999999969",
"device_id": "986575154632586", "apn_name": "internet"}'

HTTP GET
https://api.navixy.com/v2/tracker/register?

hash=a6aa75587e5¢c59¢32d347da438505fc3&1abel=T571T0&group_id=0&plugin_i

The platform will confirm with the same information as for plugin 44.

Mobile app registration

Common parameters
+ notification_email - optional parameter. Notification with invitation to install the app
will be sent to the specified in parameter email.

* notification_phone - optional parameter. Invitation to install the app will be sent to
the specified phone. Phone should be specified in international format without +
sign.

* model - enum with model always the same = mobile_unknown_xgps .

* label - string with name of your device.

« group_id - tracker group ID, 0 if tracker does not belong to any group. The specified
group must exist. See group/list.

* plugin_id - what parameter ID to use. It must be listed in available plugins list for the

user.

« activation_code - optional string with activation code. Not necessary for plugin 35
and mandatory for plugin 68.

Using parameter 35

For example, we need to activate the app for our employee Andrew. So we can name the
device with his name for convenience. Also, we will send an invitation by SMS using his
phone number.

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/register"' \
-H 'Content-Type: application/json' \
-d '{"hash": "abaa75587e5c59c32d347da438505fc3", "label":
"Andrew", "group_id": @, "plugin_id": 35, "model":
"mobile_unknown_xgps", "notification_phone": "999877459965"}"

HTTP GET
https://api.navixy.com/v2/tracker/register?

hash=a6aa75587e5c59¢c32d347da438505fc3&label=Andrew&group_id=0&plugin_i

The platform will notify us about success and with information about this device. The
platform will automatically assign device_id to the app.

{
"success": true,
"value": {
"id": 833997,

“label": "Andrew",
"group_id": o,
"source": {

"id": 526785,
"device_id": "186196632419",
"model"”: "mobile_unknown_xgps",

"blocked": false,

"tariff_id": 12163,

"phone": null,

"status_listing_id": null,

"creation_date": "2021-06-04",

"tariff_end_date": "2621-06-18"
bo

"“clone": false

Using plugin ID 68

If our user has mandatory activation codes (plugin 68) we should use this parameter
when registering a new device.

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/register' \

-H 'Content-Type: application/json' \

-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "label":
"Andrew", "group_id": @, "plugin_id": 68, "activation_code":
"6045325592", "model": "mobile_unknown_xgps",
"notification_phone": "999877459965"}"

HTTP GET
https://api.navixy.com/v2/tracker/register?

hash=a6aa75587e5¢c59¢32d347da438505fc3&label=Andrew&group_id=0&plugin_i

The platform will respond with the same information as for plugin 35.

The device doesn't register

There could be several reasons - why the device doesn't register. If we omit the
problems with the SMS gateway, and it works perfectly - all issues listed here. When we
eliminated all possible issues and checked that everything works well we can send
tracker/register_retry request to not create the same unit for the user. Moreover, it is not
possible to register two devices with the same ID on the platform.

Last update: July 7, 2023

https://www.navixy.com/docs/user/get-started-docs/tracker-activation/device-activation-problems/

How to get tracker list

Now we have a hash of an APl key — let's start with essential basics.

Navixy has tracking device as a main unit, so most requests would require you to
specify one or several tracker IDs. You can receive a list of all trackers in user's account

with tracker/list APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/list"' \
-H '"Content-Type: application/json' \
-d '{"hash": "abaa75587e5c59¢c32d347da438505fc3"}"

HTTP GET

https://api.navixy.com/v2/tracker/list?
hash=a6aa75587e5c59¢32d347da438505fc3

It will return to you

"success": true,
"list": [
{
"id": 123456,
"label": "tracker label",
"clone": false,
"group_id": 167,
"avatar_file_name": "file name",
"source": {
"id": 234567,
"device_id": 9999999988888,
"model"”: "telfmb920",
"blocked": false,
"tariff_id": 345678,
"status_listing_id": null,
"creation_date": "2011-09-21",
"tariff_end_date": "2016-03-24",
"phone": "+71234567890"
b
"tag_bindings": [{
"tag_id": 456789,
"ordinal": 4
+
1

+ id -int. Tracker ID aka object_id.

+ label - string. Tracker label.

../get-api-key/

« clone - boolean. True if this tracker is clone.

* group_id -int. Tracker group ID, 0 when no group.

* avatar_file_name - string. Optional. Passed only if present.

* source - object.

id -int. Source ID.

device_id - string. Device ID aka source_imei.

model - string. Tracker model name from "models" table.
blocked - boolean. True if tracker blocked due to tariff end.
tariff_id -int. An ID of tracker tariff from "main_tariffs" table.

status_listing_id -int. An ID of the status listing associated with this tracker,
or null.

creation_date - date/time. Date when the tracker registered.
tariff_end_date - date/time. Date of next tariff prolongation, or null.

phone - string. Phone of the device. Can be null or empty if device has no GSM
module or uses bundled SIM which number hidden from the user.

* tag_binding - object. List of attached tags. Appears only for "tracker/list" call.

tag_id -int. An ID of tag. Must be unique for a tracker.

ordinal -int. Number that can be used as ordinal or kind of tag. Must be
unique for a tracker. Max value is 5.

If account has a large amount of trackers, and you only need certain ones, you can add

an optional filter parameter to the request that will only return matching records.

This parameter has the following constraints: * labels array size: minimum 1, maximum

1024. * no null items. * no duplicate items. * item length: minimum 1, maximum 60.

To get a list of trackers with labels matching the filter use this API call:

cURL

curl

-X POST 'https://api.navixy.com/v2/tracker/list"' \

-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "labels":

["aa

, b1}

Last update: December 26, 2022

How to get track points for trips

Sometimes necessary to get all points of a trip with more info about the device's
moves. How to get them?

Firstly you need to obtain hash of an API key.

Once you get the hash, you need to get your tracker_id. The platform must know points
for what device must be in reply.

Now you can get all points for the interesting period using /track/read API call.
Parameters that necessary for this call:

* tracker_id - we got them in tracker/list call. Use only one tracker_id per call. It
should be an integer.

« from - a string containing start date/time.

* to - a string containing end date/time.
Full parameters description see at /track/read API call.

The platform will reply:

{
"success": true,
"limit_exceeded": true,
"list": [
{
"lat": 53.445181,
"lng": -2.276432,
"alt": 19,
"satellites": 8,
"get_time": "2011-06-18 ©3:39:44",
"address": "4B Albany Road, Manchester, Great Britain",
"heading": 298,
"speed": 70,
"precision": 100,
"gsm_1lbs": true,
"parking": true
}
]
}

+ limit_exceeded - boolean. true if the requested time period exceeds limit
specified in a tracker's tariff.

« lat - float. Latitude.

* 1ng - float. Longitude.

../get-api-key/
../get-tracker-list/

* alt -int. Altitude in meters.
+ satellites -int. Number of satellites used in fix for this point.
+ get_time - date/time. GPS timestamp of the point, in user's timezone.

* address - string. Point address. Will be " if no address recorded.
+ heading - int. Bearing in degrees (0..360).
+ speed -int. Speed in km/h.
* precision - optional int. Precision in meters.
« gsm_lbs - optional boolean. true if location detected by GSM LBS.
* parking - optional boolean. true if point does not belong to track.
You can also download a KML file. You could use this file with map services. It is useful
if you need to see all points on the map:
cURL
curl -X POST 'https://api.navixy.com/v2/track/download"' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "tracker_id":

123456, "from": "2020-09-23 ©03:24:00", "to": "2020-09-23
06:24:00", "format": "kml", "split": false}'

All parameters are the same with track/read plus two new optional parameters:

« format - string. File format, "kml" or "kmz". Default is "kml".

« split — boolean. If true, split tracks by folders with start/end placemarks and
track line. Default false.

Last update: July 19, 2022

How to get information from sensors and
counters of tracker

Devices can be used not only to track GPS location. They can provide information about
mileage, engine hours, measured from sensors like fuel level and temperature. All API
calls to interact with devices can be found in tracking/tracker branch.

Counters

Odometer allows to control a vehicle’s mileage in real-time. The mileage readings can
be based on the data received from a GPS tracking device or CAN bus.

Engine hours is a tool that allows owners of vehicles and special machinery to monitor
engine running time and schedule maintenance works based on this data.

Counter creation

To get information from counters they should be created. To create a counter use the
call value/set.

For example, we need to create odometer and engine hours counters. In this case we
should use the next commands:

Odometer:

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/counter/read' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d0@4da2celaf111b", "tracker_id":
311852, "type": "odometer", "value": 98342.1}"'

HTTP GET
https://api.navixy.com/v2/tracker/counter/read?

hash=a6aa75587e5¢c59¢32d347da438505fc3&tracker_id=311852&type=odometer&

Engine hours:

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/counter/read" \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "tracker_id":
311852, "type": "engine_hours", "value": 2368.2}"

HTTP GET

https://api.navixy.com/v2/tracker/counter/read?
hash=a6aa75587e5¢c59c32d347da438505fc3&tracker_id=311852&type=engine_ho

The platform will notify you about success in reply.

Getting values from counter

Now we can get information from these counters when we need with the get_counters
API call. With it the last update time and values of all counters in one call will be
received. If necessary to get information from only specific counter type and one device
then value/get call will be suitable. The same information can be obtained for the list of
devices . In this case use value/list call.

Counter values for a history period

Sometimes necessary to get data for the specific period with timestamps. For example,
it may be necessary for insurances or governments. In this case should be used data/
list call. It will return JSON with the next information:

. Response .
{
"success": true,
"list": [
{
"value": 581321.0,
"update_time": "2021-065-30 12:16:01"
b
{
"value": 581322.0,
"update_time": "2021-05-30 12:36:01"
b
{
"value": 581323.0,
"update_time": "2021-05-30 12:56:01"
b
{
"value": 581324.0,
"update_time": "2021-05-30 13:16:01"
b
{
"value": 581325.0,
"update_time": "2021-05-30 13:36:01"
}
]
}

Counted mileage and engine hours for a period

Sometimes we need counted values for a period, for example, how many kilometers the
device travelled for 10 days or how many hours the engine was on. In this case we
should use stats/mileage or stats/engine_hours calls.

Sensors

The platform has two subtypes of sensors:

« metering sensors - Discrete sensors responsible for inputs states on the platform.

+ discrete sensors - Measurement sensors will show information from variable types
of sensors.

The list of all supported sensors can be found here

../../resources/tracking/tracker/stats/stats_mileage/
../../resources/tracking/tracker/stats/stats_engine_hours/

Sensor creation

The ability to connect sensors, as well as their number may vary depending on the
device model. Some sensors automatically creates by the platform. The list of these
sensors depends on device model and information received from them. Some sensors
should be created manually.

Full sensor creation has several steps:

1. Data sending from the sensor should be configured on the device's side, and it
should be received by the platform. How to know - which one is received by the
platform? The best way is connecting to AirConsole.

2. We know - which sensor sends data and can choose one to create

3. If this is an analog sensor, or it is a sensor that sends data in uncalibrated values
(for example, fuel sensor that sends percents instead of liters) - it should be
calibrated.

Getting values from sensors

All sensors can be found in different widgets. Discrete widgets in the inputs' widget.
Measurement sensors can be found in the sensors readings, OBD & CAN and Fuel level
widgets. For every widget we have its own API call to get data:

* To get input states use get_inputs request.

+ To get data from CAN and OBD sensors get_diagnostics APl action.

+ Data from the fuel sensors can be obtained using get_fuel call.

+ Readings from metering not CAN, OBD and fuel sensors mey be received with
get_readings call.

Getting values from all sensors and states

Also, you are able to get the data from all sensors of the device, its states and counters.
Use tracker/readings request. It will reply with the next information:

{
"success": true,
"inputs": |
{
"label": "Board voltage",
"units": "V",
"name" : "board_voltage",

"type": "power",

../../resources/tracking/tracker/sensor/calibration_data/
../../resources/tracking/tracker/readings/

IF

"states":

{

"value":

"units_
“conver
"conver
"update

"label™
“units”
"name" :
"type":
"min_va
"max_va

"value":

“units_
"conver
“conver
"update

"field":
"value":

"update

"field":
"value":

"update

"field":
"value":

"update

"field":
"value":

"update

"field":
"value":

"update

"field":
"value":

"update

26.13,
type": "custom",

ted_units_type": null,

ted_value": null,

_time": "2021-06-01 15:23

: "Analog sensor #1'

"analog_1",
"fuel",
lue": 0.0,
lue": 450.0,
269.82,

type": "litre",

ted_units_type": null,

ted_value": null,
_time": "2021-06-01

"battery_level",
4.01,
_time": "2021-06-01

"input_status",
0,
_time": "2021-06-01

"movement_state",
"parked",
_time": "2021-06-01

"actual_track",
34112,
_time": "2021-06-01

"output_status",
3,
_time": "20621-06-01

"tcp_status",
2 1
_time": "20621-06-01

15

15

15

15

12:

15

15

123

123

123

123

58:

323

:23

103"

:03"

103"

103"

103"

03"

103"

105"

« input status and output status fields will show you binary information in decimal
form. For example, output_status field shows 3 - itis 11 in binary. The example
device has two outputs. That's why 11 means output 1T = On and output 2 = ON.

Getting data from multiple devices in one request

There is an API call that may optimize work with multiple devices at once. Just in case
it is necessary to request the current data from a lot of devices in one account, use
tracker/readings/batch_list API call. It allows getting the same information as in the
previously described method for multiple trackers.

Getting historical data from sensors

It may be necessary to get historical data from measurement sensors. In this case, you
can use tracker/sensor/data/read API call which allows you to get all provided values
from a sensor in a period of 30 days. Choose the necessary sensor and specify its ID.
The list of a device's sensors with IDs you can get with sensor/list request.

Last update: August 1, 2023

Virtual sensors usage

In the world of loT and telematics, understanding and interpreting data is crucial. This is
where virtual sensors come into play. These powerful tools help users comprehend data
from various device sensors in a more meaningful way, often translating it into text
form for easier understanding. In this article, we'll delve into what virtual sensors are,
how they work, and how to configure them.

Find this instruction with operations in Ul only in our Expert center.

What are virtual sensors

Virtual sensors interpret and translate raw data from the physical sensors of a device,
making it comprehensible and actionable. For example, they can get data from state
fields or even from a certain bit in a particular field.

One of the standout features of virtual sensors is their ability to monitor ignition, even
on devices where no ignition input is provided or that input is already occupied by other
needs. This allows users to read ignition from any desired source, be it motion, RPM, or
voltage.

The information from virtual sensors can be viewed in several ways:

+ Current readings in widgets.
* Historical readings in reports.

« Alerts when certain values are received in rules.

The virtual sensor object consists of the following parameters:

{

“type": "virtual",
"id": 1700049,
"sensor_type": "virtual_ignition",
“name": "Virtual Ignition",
“input_name": "board_voltage",
"parameters": {

"calc_method": "in_range",

"range_from": 13.4,
"value_titles": [{
"“value": "0",
"title": "Off"
oA
"value": "1",
"title": "On"

https://docs.navixy.com/expert-center/virtual-sensors-usage

13

+ type - string. This should be set as virtual for virtual sensors.
« id -int. This is the sensor's ID.

* sensor_type - enum. Must be "virtual_ignition" for virtual ignition sensor or "state"
for others.

* name - string. Your name of a sensor. May contain up to 100 characters.

« input_name - string. A source input field (identifier). It indicates from which sensor
the information is received by the platform.

* parameters - an object with additional parameters.

« calc_method - enum. This defines the method of sensor value calculation. It must
be one of the following: in_range, identity, bit_index.

* range_from - double. Lower boundary of the range and is only used with the
"in_range" calculation method.

* range_to - double. Upper boundary of the range and is only used with the
"in_range" calculation method.

« bit_index -int, [1..N]. A bit index in the input field source value and is only used
with the "bit_index" calculation method.

« value_titles - a mapping for assigning special titles for sensor values, if required.

+ value - string. Sensor value - raw value that comes from a device. Max size 64
chars.

+ title - string. Your title for the sensor value. Max size 64 chars.

Il note "There can only be one virtual sensor of type virtual_ignition for each

tracker. For the "in_range" calculation method, one or both fields "range_from" and
‘range_to" must be specified. The "bit_index" field is mandatory for the "bit_index"
calculation method. All values within "value_titles" must be unique.”

1## Where virtual sensors types are useful

Value in range

A 'Value in Range' sensor is an effective tool for maintaining essential parameters, such
as virtual ignition, temperature, humidity, and fuel level, within a specified range. It
functions on a simple principle:

- if a sensor value falls within defined boundaries, it equates to 1 (your A value).

- if it's outside these boundaries, it corresponds to 0 (your B value).
To get virtual ignition

If your device is without an ignition input or all physical inputs are used on it, a virtual
ignition can be utilized to detect the ignition state. This process works by detecting a
significant increase in the car's onboard voltage when the engine is turned on. This
change in voltage can then be used as a signal to determine whether the engine is
running or not. Typically, if the board voltage exceeds 13.2 V, it's a clear indication that
the engine is operational.

To get sensor values into understandable format

This example parallels the one we just discussed about setting up a virtual ignition, but
in this case, instead of monitoring a vehicle's ignition, we're keeping tabs on
temperature.

Let's say you have an analog sensor that gathers temperature data. For instance, it
might output 1020 for -10°C, and 1900 for 0°C. It's important to note that the
information from these analog sensors comes uncalibrated, which means you'll need to
specify it in this raw form when setting up your virtual sensor.

So, by following this method, you can translate complex sensor values into a simplified,
more understandable format.

Source value

With virtual sensors, you have the flexibility to assign your own definitions to any values
received. This feature is particularly handy when dealing with predefined sets of values
or strings, allowing you to work with static values without the need to specify different
ranges. Plus, it's adaptable to any data you require.

For instance:

+ 0/1

* true/false

* on/off

+ open/close

+ armed/disarmed

* state 1/state 2/state 3

* key 1/key 2/key 3, etc.

The mode operates in the following way:

+ When value 1 is received, that's designated as your value A.
+ When value 2 arrives, that becomes your value B.
* When value 3 is transmitted, that's identified as your value C, and so forth.

The best way to get historical readings on this calculation method sensors is to use it
with state field value alert with report on all events.

Let's clarify this functionality with a practical example.
When you need to define every sensor value to understand the readings

Certain sensors might supply different numerical values to a platform. For example,
let's say we have a truck equipped with a PTO drive engagement sensor that only
outputs the following values:

*+0-No PTO drive is engaged

+1- At least one PTO drive is engaged

+ 2 -Error

* 3 - Not available

With virtual sensor you can get useful information instead of codes like 0, 1 or others.

Hardware key readings for drivers, equipment and trailers

Certain devices have the ability to recognize drivers and their iButtons, RFID keys, or
equipment linked via Bluetooth sensors. The platform can identify the closest
equipment or driver to the device, and a Virtual Sensor can display these names.

The simplest method of identification is through the use of tags. Each unit that's
connected to heavy equipment has its own sensor with an attached tag. This tag serves
as a hardware key that's recognizable by the platform. When the unit is connected to the
machine, this key is transmitted to the platform.

Just like the way we named values for PTO, the associated name of this key can be
displayed in an easily understandable format. This ensures that you always know which
unit is communicating with your machine.

Event code readings

Navixy platform has the capability to provide you with the most recent event code
received from your device. In this scenario, you can select the event code input and

define the appropriate event codes to be displayed in widgets. For instance, if you're
using a Jimi JC400, you can access Driver Monitoring System (DMS) events.

Bit index

Certain devices might transmit complex data in their packets, sometimes consolidating
several parameters into a single value. The Virtual Sensors feature gives you the ability
to interact with segments of telematics values, helping you decode the data sent by the
GPS hardware.

For instance, let's say a value of 011 is transmitted. We must first interpret this
information in little endian (from he right to the left) according to the protocol:

+ 1 - Indicates the status of the driver's seat belt: 0 signifies it's fastened, 1 means it's
unfastened. (Bit 1)

+ 1 - Displays the status of the driver's door: 0 means it's closed, 1 indicates it's open.
(Bit 2)

+ 0 - Represents the condition of the hood: 0 means it's closed, 1 indicates it's open.
(Bit 3)

Each position in the parameter reflects the status of different vehicle systems. To
configure and display these, you'll need to create a separate sensor for each parameter.

Create

You can create such sensor with tracker/sensor/create request. For example, we need
to track the virtual ignition on a device by the board voltage. In this case, we should use
call:

cURL
curl -X POST 'https://api.navixy.com/v2/tracker/sensor/create’' \

-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "tracker_id":

123456, "sensor": {"type": "virtual", "sensor_type":
"virtual_ignition", "name": "Virtual Ignition", "input_name":
"board_voltage", "parameters": {"calc_method": "in_range",
"range_from": 13.4, "value_titles": [{"value": "@", "title":

"off"}, {"value": "1", "title": "On"}]}}}'

. Don’t use sensor_id parameter in the sensor object since there is no sensor with
any ID before it is created.

The platform will notify you about the result with the assigned ID to this newly created
sensor.

Reconfigure

In case you want to change something in the virtual sensor settings, you can use
tracker/sensor/update API call. For instance, we should change the range from which
the virtual ignition must be calculated.

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/sensor/update’ \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9dB4da2celaf111b", "tracker_id":
123456, "sensor": {"type": "virtual", "sensor_id": 965837,

"sensor_type": "virtual_ignition", "name": "Virtual Ignition",
"input_name": "board_voltage", "parameters": {"calc_method":
"in_range", "range_from": 13.7, "value_titles": [{"value": "@",

"title": "Off"}, {"value": "1", "title": "On"}]}}}'

Get values per period

When you want to show sensor readings or probably generate your own report it will be
useful to get information in form value - time. In this case, the API call tracker/sensor/
data/read will help.

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/sensor/data/read’ \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "tracker_id":
123456, "sensor_id": 965837, "from": "2023-07-24 00:00:00", "to"
"2023-07-24 23:59:00", "raw_data": false}'

. Use raw_data: true in case, you need to get the raw sensor values per period.

Get the current values

It is possible to read all current values from all virtual and measurement sensors and
counters from multiple devices at once with tracker/readings/batch_list API call. It will

provide you with all current information per one call so your app may request a lot of
other requests without getting the limit 50 calls per second.

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/readings/
batch_list' \
-H '"Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59¢32d347da438505fc3",
"trackers": [10181215,10038816]}"'

Get readings with reports

It is possible to get information about sensor readings within reports. Let's describe
every report type and provide some examples.

Equipment working time report

The equipment working time report reveals the operational times of any unit linked to
discrete or virtual inputs with a calculation method value in the range or bit index. It
allows you to learn about the operating time of the equipment both while moving and
stationary, obtain daily activity data, and pinpoint when and where the equipment was
activated.

Report may be generated with plugin 12. Use the next example for reference:

cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/
generate' \

-H 'Content-Type: application/json' \

-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "title":
"Equipment working time", "trackers": [642546], "from":
"2023-07-27 00:00:00", "to": "2023-07-27 23:59:59", "time_filter":
{"from": "00:00:00", "to": "23:59:59", "weekdays":
[1,2,3,4,5,6,7]}, "plugin": {"hide_empty_tabs":true, "plugin_id":
12, "show_seconds" :false, "min_working_period_duration":

60, "show_idle_percent":true, "filter":false, "sensors":
[{"tracker_id":642546, "sensor_id" :1931610}]}}"

Engine hours report

The engine hours report provides the working duration for ignition-based sensors. It
offers valuable insights into the operation time of your ignition-based equipment,

whether it's on the move or idle. The report also delivers daily activity data, enabling you

to identify precisely when and where the ignition was on.

Generate report using plugin 7. The next example shows correct APl request for that:

cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/
generate' \

"Engine

-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "title":
hours report", "trackers": [642546], "from": "2023-07-27

00:00:00", "to": "2023-07-27 23:59:59", "time_filter": {"from":
"00:00:00", "to": "23:59:59", "weekdays": [1,2,3,4,5,6,7]},

"plugin’

": {"hide_empty_tabs" :true, "plugin_id":

7, "show_seconds" :false, "show_detailed" :true, "include_summary_sheet":tr

Measuring sensors report

The measuring sensors report displays data from any configured measurement sensors

or virtual sensors with a calculation method source value for a selected period. It

enables you to view both graphical and statistical information from your device's

Sensors.

This report can be generated with plugin 9. For instance:

cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/
generate' \

-H 'Content-Type: application/json' \
-d '"{"hash": "ab6aa75587e5c59c32d347da438505fc3", "title":

"Measuring sensors report", "trackers": [1685505], "from":
"2023-07-27 00:00:00", "to": "2023-07-27 23:59:59", "time_filter":

{"from"

"00:00:00", "to": "23:59:59", "weekdays":

[1,2,3,4,5,6,7]}, "plugin": {"hide_empty_tabs":true, "plugin_id":

9, "details_interval_minutes":
5,"graph_type":"time", "smoothing" :true, "show_address":false, "filter":t
[{"tracker_id":1685505, "sensor_id" :613753}]}}

Vehicle readings report

The vehicle readings report showcases data gathered from your vehicle's instruments

via the CAN/OBD or virtual sensors for any chosen time frame. This includes

information such as mileage, engine RPMs, speed, fuel consumption, coolant

temperature, and more.

Report is available with plugin 22:

cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/
generate' \

-H 'Content-Type: application/json' \

-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "title":
"Vehicle readings report”, "trackers": [642546], "from":
"2023-07-27 00:00:00", "to": "2023-07-27 23:59:59", "time_filter":
{"from": "00:00:00", "to": "23:59:59", "weekdays":
[1,2,3,4,5,6,7]}, "plugin": {"hide_empty_tabs":true, "plugin_id":
22,"details_interval_minutes":

30, "graph_type":"time", "smoothing" :false, "sensors":[{"tracker_id":
642546, "sensor_id" :1866139}]}}"

Report on all events

Reports on all events is handy for obtaining information about specific states received
by the sensor with the aid of rules.

Generate this report type with plugin 11.

cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/

generate' \

-H 'Content-Type: application/json' \

-d '{"hash": "abaa75587e5c59c32d347da438505fc3", "title":
"Event report", "trackers": [642546], "from": "2023-87-27
00:00:00", "to": "2023-07-27 23:59:59", "time_filter": {"from":
"00:00:00", "to": "23:59:59", "weekdays": [1,2,3,4,5,6,7]},
"plugin”: {"hide_empty_tabs":true, "plugin_id":
11, "show_seconds" :false, "group_by_type" :false, "event_types":
["state_field_control”, "sensor_inrange", "sensor_outrange"]}}'

For obtaining information from reports, follow to our instructions.

Rules for virtual sensors

Since we have the possibility to generate events report, let's describe rules. There are a
couple of rules you can implement to receive alerts based on virtual sensor values:

Parameter in range

Parameter in range rule is associated with the use of measurement sensors. Its
function is to generate a notification whenever the sensor data received by the platform
falls within or outside a specified range.

../how-to-obtain-information-from-report/

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/rule/create’' \

-H 'Content-Type: application/json' \

-d '"{"hash": "abaa75587e5c59c32d347da438505fc3", "rule":
{"name": "Parameter in range", "description": "Rule for getting
alert on specific range", "alerts": {"sms_phones": [], "emails":
[1,"phones”: [],"push_enabled": true }, "extended_params":
{"sensor_id": 1991090, "threshold": 0, "min": 2, "max":

3 },"primary_text": "Sensor value out range", "secondary_text":
"Sensor value in range", "suspended": false, "trackers":
[642546], "type": "sensor_range", "param": null, "zone_ids":

[1,"schedule": [{"type": "weekly", "from": {"weekday": 1,"time":
"00:00:00"}, "to": {"weekday": 7,"time": "23:59:59"} }]}}’

State field value

State field value is used to monitor any virtual sensor states that you define in the state
column when configuring the virtual sensor. As soon as that state is received, you'll be
notified.

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/rule/create’' \

-H 'Content-Type: application/json' \

-d '{"hash": "a6aa75587e5c59¢32d347da438505fc3", "rule":
{"name": "State field value", "description": "Rule for getting
specific states", "alerts": {"sms_phones": [], "emails":
[1,"phones”: [],"push_enabled": true }, "extended_params":
{"state_field_index": null, "state_field_max_index":
null, "virtual_sensor_id": 2136502, "trigger_value":
"1","allow_repeat": false, "repeat_delay_seconds":
null, "state_field_index_max": null },"primary_text": "Eye sensor:
movement detected”, "secondary_text": "", "suspended"”:
false, "trackers": [642546], "type": "state_field_control”, "param":
null, "zone_ids": [], "schedule": [{"type": "weekly","from":
{"weekday": 1,"time": "00:00:00"},"to": {"weekday": 7,"time":
"23:59:59"}}]}}!

To obtain notifications on these rules refer to the instruction.

Last update: August 8, 2023

../how-to-work-with-notifications/

How to work with geofences

Geofence is a virtual perimeter for a real geographic area. The system can control
whether object crossed geofence border (either "in" or "out"). All these events are
logged, so user can obtain geofence reports and receive alerts.

Moreover, you can assign various rules for events to particular geofences. For example,
if you need to get speeding alerts only within a certain area (e.g. in city) or route.

Geofence creation

To create a geofence we should use the zone/create API call. We have several types of
them. So the call and process can be different between them.

Circle geofence

It is the easiest geofence to create. There we should use only one point as a center and
radius. The platform will automatically calculate borders for it.

For example, we want to create a geofence with a radius 50 meters that will cover a
business park to track employees. We need this geofence to create a rule that will
provide an alert when they will come to work and another one - when they go from it.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/zone/create' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "zone":
{"label": "Circle geofence", "type": "circle", "center": {"lat":
61.49504550221769, "lng": 23.775476217269897}, "radius": 50,
"tags": [179227], "color": "@3A9F4", "address":"Address"}}'

The platform will respond with status and created geofence ID. We can use this ID to
create a rule.

Polygon geofence

The second type we will create - the polygon geofence. It is more difficult than the circle
geofence because we should specify special points for it where the geofence border

../../resources/tracking/zone/
../use-rules/

will change direction. Maximum count of points is 100. This limitation is necessary
because a geofence is not just a visual display of some area. The platform calculates
the data for reports and alerts on the fly. When the number of points in a geofence is
more than 100, computational costs begin to grow exponentially.

For example, we want to track maximum speed of our vehicles in Rome. To do that, we
will need to create a geofence that covers the city.

. Geofence accuracy can be fairly low as long as it's border crosses all the main
roads.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/zone/create' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "zone":
{"label": "Speed limit in Rome", "type": "polygon", "color":
"27A9E3", "address": "Address"}, "points": [{"lat":
41.80970819375622, "1lng": 12.576599121093752, "node": true},
{"lat": 41.79128073728445, "lng": 12.522354125976564, "node":
true}, {"lat": 41.80970819375622, "lng": 12.38983154296875,
"node": true}, {"lat": 41.86649282301996, "lng":
12.369232177734375, "node": true}, {"lat": 41.90943147946872,
"lng": 12.380906515136719, "node": true}, {"lat":
41.956426414614235, "1lng": 12.379531860351562, "node": true},
{"lat": 41.98501507352485, "lng": 12.435150146484375, "node":
true}, {"lat": 41.98807738309159, "lng": 12.50724792480469,
"node": true}, {"lat": 41.97531678812783, "lng":
12.54913330078125, "node": true}, {"lat": 41.95795827518022,
"lng": 12.580718994140627, "node": true}, {"lat":
41.92322706102551, "lng": 12.61161804199219, "node": true},
{"lat": 41.902277040963696, "lng": 12.619171142578127, "node":
true}, {"lat": 41.86904950322354, "lng": 12.607498168945312,
"node": true}]}’

Don't forget that the rule isn't created yet. The platform will respond with geofence ID.
Use the next instruction to create rules.

Sausage geofence

We use sausage geofences for roads. They should be more accurate, and their
calculated area is not so hard as for polygons. That's why the maximum number of
points is 1024.

For example, we need to create special geofences for street cleaning cars, and we want
to see - is this car cleaned the street, or it turned from it in the middle.

../use-rules/

cURL

curl -X POST 'https://api.navixy.com/v2/zone/create’ \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d04da2celaf111b", "zone":
{"label": "Clean street 1", "type": "sausage", "radius": 20,
"color": "27A9E3", "address": "Address"}, "points": [{"lat":
21.5337018035, "1ng" :-104.8700889945, "node" :true}, {"lat":
21.5336107362, "1Ing":-104.8691622913, "node" :true}, {"lat":
21.5336444186, "1ng" :-104.8674470186, "node" :true}, {"lat":
21.5336494086, "1ng" :-104.8656499386, "node" :true}, {"lat":
21.5341084873, "1ng" :-104.8656606674, "node" :true}, {"lat":
21.5341434171,"1ng" :-104.8661112785, "node" :true}, {"lat":
21.534742213,"1ng" :-104.8656713963, "node" :true}, {"lat":
21.5350266402, "1ng" :-104.8659932613, "node" :true}, {"lat":
21.5336593886, "1Ing":-104.8669320345, "node" :true}, {"lat":
21.5336469136, "1ng" :-104.8691529036, "node" :true}, {"lat":
21.5337367335,"1ng" :-104.87005949082, "node" :true}, {"lat":
21.5338427707, "1ng" :-104.87065852032, "node" :true}, {"lat":
21.5341184672,"1ng" :-104.8718833923, "node" :true}, {"lat":
21.5344577853, "1ng" :-104.873329103, "node" :true}, {"lat":
21.5346199591, "1ng" :-104.8735275865, "node" :true}, {"lat":
21.532277154,"1ng" :-104.8760032654, "node" :true}, {"lat":
21.5312941127,"1ng" :-104.8770868778, "node" :true}, {"lat":
21.5301214405,"1ng" :-104.8784118891, "node" :true}, {"lat":
21.5291383846, "1ng":-104.8793131113, "node" :true}, {"lat":
21.5287790935, "1ng" :-104.8795759678, "node" :true}, {"lat":
21.5284647131, "1ng" :-104.8797154427, "node" :true}, {"lat":
21.5280804693, "1ng" :-104.8797905445, "node" :true}, {"lat":
21.5276413324,"1ng" :-104.879822731, "node" :true}, {"lat":
21.5273668712,"1ng" :-104.8799729347, "node" :true}]}"

The platform will provide the status, and geofence ID.

The sausage geofence also, could be used to create a special route for cars with
valuable cargo, such as cash collectors. Or for patrol cars. In this case, use the rule
"deviation from the route".

Getting geofence name by a tracker's location

It may be necessary to get the geofence name or ID where a device is located. In this
case, use zone/search_location. For example, we want to get a geofence, where our
device is located, or we want to count how many devices are in some zone.

To get this information we should request a device's state and location first. With
received lat and Ing parameters we can check geofences.

Last update: January 15, 2024

How to create and work with points of interest.

Points of interest (POI) or places can be used for different purposes. They can help you
organize your list of frequently visited clients, simplify your work with tasks, and can be
used to analyze your business with reports.

Custom fields have also been designed for them, which can be used to add additional
necessary information about locations and customers. They can be used for creation of
your own CRM or ERP system, as well as for easy integration with third party systems. It
is possible to add a phone number, e-mail, and other relevant customer data. To get to
the next level, it's possible to assign specific employees to a customer.

Here we will describe - how places with custom fields can be created and used.

Creation of fields and POls

Before we start using fields and POls we should create them. Our purpose is to create a
new customer with necessary information and assign an employee to him. This
employee will be able to see the all information in his mobile app. The place object
described here.

Example: For our own CRM system we need to have the next fields: * Label - there will
be our customer's name. * Address - full address where our customer located. *
Description - additional description about the customer. Like the working hours or
something specific. * Tags - here we will add tags. They will be useful to ease up
searching and using for tasks in Ul. * E-mail - customer's email. * Phone - customer's
phone number. * The last visit date - we are interested to see the last visit of customer.
If the last visit will be more than X days we will notify our employee about that. * The
last order Ne - to ease up the searching of the last customer's order_id. * The last visit
result - a text field where our employee can specify information about results of his last
visit. * Responsible employee - this field is necessary to assign a place to our
responsible employee for this address. He will be able to see and change necessary
information using his mobile app.

Custom fields

Some fields are default and can't be changed. They are Label, Address, Description and
Tags. All other necessary fields should be created by ourselves.

. Custom fields we change here will be added to all places we have and will create.

First we should get the entity ID to know - what entity we should update and where to
add fields.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/entity/list"' \
-H 'Content-Type: application/json' \
-d '{"hash": "abaa75587e5¢c59c32d347da438505fc3"}"'

In a reply we will receive a necessary entity ID with already existing fields in it. We
should add new fields in this entity. We add only not existing fields that's why we will
not list them in our request.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/entity/fields/update’ \

-H 'Content-Type: application/json' \

-d '"{"hash": "abaa75587e5c59c32d347da438505fc3",
"delete_missing": true, "entity_id": 5208, "fields": [{"label": "E-

mail”, "required": false, "type": "email", "description":
"Customer's email"}, {"label": "Phone", "required": false, "type":
"phone"”, "description": "Customer's phone"}, {"label": "The last
visit date", "required": false, "type": "text", "description":
null}, {"label": "The last order Ne", "required": false, "type":
"text", "description”: null}, {"label": "The last visit result",
"required": false, "type": "text", "description": null}, {"label":
"Responsible employee", "params': {"responsible": true},
"required"”: false, "type": "employee", "description": null}]}’

The platform will confirm our update with:

{
"success": true,
"list": [
{"id" :2327,

"label":"E-mail",
"“required"”:false,
"description”:"Customer's email",
“type":"email"

s

{"id" :2328,
"label" :"Phone",
"required" :false,
"description” :"Customer's phone",
"type" :"phone"

b

"id": 2329,
"label": "The last visit date",
"required": false,
"description”: null,
"type": "text"

Ve

{"id" :23380,
"label" :"The last order Ne",
"“required":false,
"description" :null,
“type":"text"

bo

{"id" :2331,
"label" :"The last visit result",
"required" :false,
"description” :null,
"type":"text"

b

{"id" :2332,
"label" :"Responsible employee",
“required"”:false,
"description" :null,
"params"” :{"responsible"” :true},
"type" :"employee”

}

]

When the reply received we know what IDs our fields have, and we can change their
order in the entity. Now we should update our entity.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/entity/update' \

-H '"Content-Type: application/json' \

-d '"{"hash": "ab6aa75587e5c59c32d347da438505fc3", "entity":
{"allowed": true, "id": 520, "type": "place", "settings":
{"layout": {"sections": [{"label": "Places", "field_order":
["label", "location", "description", "tags", "2327", "2328",
"2329", "2330", "2331", "2332"]}}}}

POls creation

We have successfully set the fields for all locations, and now we need to create a
location. The names of the fields already contain - what information we would like to
see for each place. So we just need to fill in the parameters of these fields according to
the client's data.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/place/create’ \

-H 'Content-Type: application/json' \

-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "place":
{"label": "Company1", "description": "accepted one more deal for 7
devices on the next week", "files": [], "fields": {{"2327":
{"value": "shopl@email.com", "type": "email"}}, {"2328": {"value":
"555231415221", "type": "phone"}}, {"2329": {"value":
"10/10/2021", "type": "text"}}, {"2330": {"value": "87292",
"type": "text"}}, {2331: {value: "Sold 10 devices", type:
"text"}}, {"2332": {"value": 71247, "type": "employee"}}},
"location": {"address": "Lovell House, 6 Archway, Hulme,
Manchester M15 5RN, UK", "lat": 53.46583133200717, "lng":
-2.2464680671691895, "radius": 50}, "tags": [218916]}"

The platform will confirm creation with:

{

"success" :true,
"id" :1521307

« id -int. An ID of the created place. It can be used for obtaining and updating the
place object.

Obtaining and updating information about places

* To get information about place objects (for example, to pull this data to your CRM)
use the place/list API call.

+ To get a count of visits for places generate a report with ID 85.

+ To update information about place use place/update API call.

Getting POl name by a tracker's location

It may be necessary to get the POl name or ID where a device is located. In this case,
use place/search_location. For example, we want to get a place, where our device is
located, or we want to count how many devices are in some place.

To get this information we should request a device's state and location first. With
received lat and Ing parameters we can check places.

Last update: December 26, 2022

How to use rules

Rules used to set up conditions according to which the system logs the events and
sends notifications to user.

When a server receives a new portion of data from the device, it checks whether the
conditions set are true or false for this data. If they are true, the server generates an
event in history, logs it and immediately sends SMS, push message or email and saves
event in history.

Create

To start work the rule must be created. Let's create a rule with conditions according to
which the platform will generate events and schedule intervals when this rule should
work using the rule/create. The user must have access to rule update.

Necessary parameters for this call. Availability of some parameters depends on used
rule type:

« name - A string containing a name of created rule.

+ description - A string containing rule's description.

+ zone_ids - An int array. A list of zones to bind where the rule will work. Leave it
empty if rule should work everywhere. Parameter zone_ids is not allowed for rule
offline and required for route and inoutzone rule types.

* trackers - Anint array. A list of tracker IDs belong to user for which the rule will
work.

* type - A string containing one of pre-defined types of rules. See rule types.

* primary_text - A string with primary text of rule notification when condition is

true.

+ secondary_text - An optional string with secondary text of rule notification when
condition is false . The availability of this parameter depends on rule type. Not
every rule has the secondary_text.

+ param - An optional integer. A common parameter that responsible for integer
conditions. The availability of this parameter depends on rule type. See rule types.

+ alerts - An object with destinations for notifications. Answers the question - who
and how will receive notifications. Described in rule object.

+ suspended - A boolean which starts and stops the rule. true if the rule suspended.

../../resources/tracking/tracker/rules/rule_types/
../../resources/tracking/tracker/rules/rule_types/
../../resources/tracking/tracker/rules/rule/

+ schedule - An optional object which configures the time - when the rule works.
Described in rule object.

+ extended_params - An optional object. Specified for concrete rule type. See rule
types.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/rule/create’' \

-H '"Content-Type: application/json' \

-d '{"hash": "a6aa75587e5c59¢c32d347da438505fc3", "rule":
{"description”": "", "type": "work_status_change", "primary_text":
"status changed", "alerts": {"push_enabled": true, "emails":
["example@gmail.com"], "emergency": false, "sms_phones":
["745494878945"], "phones": []}, "suspended": false, "name":
"Status changing", "trackers": [123456], "extended_params":
{"emergency": false, "zone_limit_inverted": false, "status_ids":
[319281,319282,319283]}, "schedule": [{"from": {"weekday": 1,
"time": "00:00:00"}, "to": {"weekday": 7,"time": "23:59:59"},
"type": "weekly"}], "zone_ids": []}}'

You will get ID of created rule in response.

{
"success": true,
"id": 123
}
Bind/Unbind

When a rule created, bind devices to it. For example, a newly registered device must
have the same rule. Unnecessary to create another rule. Bind this device to an already
existing rule. Unbinding works similarly. When a rule is not necessary for some devices,
unbind them without deleting rules.

Necessary parameters for both calls the same.

* rule_id - AnID of arule. You can get IDs using the rule/list call.

* trackers - Anint array. List trackers' IDs. Trackers which do not exist, owned by
other user or deleted ignored without errors.

APl requests:

Bind

curl -X POST 'https://api.navixy.com/v2/tracker/rule/bind"' \
-H 'Content-Type: application/json' \

../../resources/tracking/tracker/rules/rule/
../../resources/tracking/tracker/rules/rule_types/
../../resources/tracking/tracker/rules/rule_types/

-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "rule_id":
123, "trackers": [265489]}"

Unbind

curl -X POST 'https://api.navixy.com/v2/tracker/rule/unbind’' \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59¢c32d347da438505fc3", "rule_id":
123, "trackers": [265489]}"'

Update

If the rule must be updated, for example, one more phone number must be added for
SMS notifications, you can use the rule/update call. It is much better than deleting an
existing rule and creating a new one.

List of necessary parameters is the same as in rule/create call plus id parameter.
* id - Aninteger with ID of the updating rule. You can get IDs using the rule/list call.
APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/rule/update’ \

-H 'Content-Type: application/json' \

-d '{"hash": "a6aa75587e5c59¢c32d347da438505fc3", "rule":
{"id": 123, "description": "", "type": "work_status_change",
"primary_text": "status changed", "alerts": {"push_enabled": true,
"emails": ["example@gmail.com"], "emergency": false, "sms_phones":
["745494878945"], "phones": []}, "suspended": false, "name":
"Status changing", “"trackers": [123456], "extended_params":
{"emergency": false, "zone_limit_inverted": false, "status_ids":
[319281,319282,319283]}, "schedule": [{"from": {"weekday": 1,
"time": "00:00:00"}, "to": {"weekday": 7, "time": "23:59:59"},
"type": "weekly"}], "zone_ids": []}}'

Suspend

To suspend the rule use the rule/update call and change only one parameter suspended

to true. All other parameters should present in the call without changes.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/rule/update’ \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "rule":

{"id": 123, "description": "", "type": "work_status_change",
"primary_text": "status changed", "alerts": {"push_enabled": true,
"emails": ["example@gmail.com"], "emergency": false, "sms_phones":
["745494878945"], "phones": []}, "suspended": true, "name":
"Status changing", "trackers": [123456], "extended_params":

{"emergency": false, "zone_limit_inverted": false, "status_ids":
[319281,319282,319283]}, "schedule": [{"from": {"weekday": 1,
"time": "00:00:00"}, "to": {"weekday": 7, "time": "23:59:59"},
"type": "weekly"}], "zone_ids": []}}'

Last update: December 26, 2022

How to work with notifications

Notifications important part of the tracking. A created a rule will track triggering of
specified conditions and send events to emails and phones. It sends notifications to
know that a condition triggered. Sometimes, necessary to store those notifications and
history entries to use them in special reports, or they can be used for scripts build on
APls. Let's see how to work with them.

Obtain a list of history entries

All unread events of user
Here can be used the call history/unread/list to get all unread events.
The call contains only two optional parameters:

« limit -int with a maximum count of entries in response

« from - a string containing the start date/time for searching. Without this parameter
you will get all unread entries for the last 30 days.

In our example we need to obtain no more than 100 entries for last month. If today is
26-01-2021 then API request will be:

cURL

curl -X POST 'https://api.navixy.com/v2/history/unread/list’' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b", "limit": 100,
"from": "2020-12-26 00:00:00"}"

Response will contain a list of history entries with information that could be used for
different purposes:

{

"success": true,

"list": [{
"id": 1,
"type": "tracker",
"is_read": false,
"message"”: "Alarm",
"time": "2020-12-31 00:00:00",
"event": "offline",
"tracker_id": 2,
"rule_id": 3,

"track_id": 4,

"location":{

"lat": 50.0,
"lng": 60.0,
"precision": 50
b
"address": "address",

"extra": {
"task_id": null ,
"parent_task_id": null,
"counter_id": null,
"service_task_id": null,
"checkin_id": null,
"place_ids": null,
"last_known_location": false,
"tracker_label": "Tracker label",
"emergency": false,
"employee_id": 4563

}H

Events for specific trackers and time period

Here can be used the history/tracker/list call to get all events for a specific tracker or
trackers per necessary time period. Also, this call can return only specific event types
with sorting by time if necessary.

The necessary parameters for the call:
* trackers -anint array. A list of tracker IDs belong to user for which events will be
searched.

« from - a string containing the start date/time for searching.
* to - a string containing the end date/time of searching. Must be after from date.
Optional parameters that could be used to get more specific information:
* events - a string array with necessary event types. All other events will be ignored.
Default: all. To get the list of events use tracker/history/type call.
« limit -integer with a maximum count of entries in result.
+ ascending - a boolean where sort ascending by time when itis true and

descending when false.

In our example we need to obtain no more than 100 entries for December for one device
sorted descending by time. Also, necessary to know only when the device entered and
exited the geofence. APl request will be:

cURL

curl -X POST 'https://api.navixy.com/v2/history/tracker/list"' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "trackers":
[123985], "from": "2020-12-01 00:00:00", "to": "2020-12-31
23:59:59", "events": ["inzone", "outzone"], "limit": 100,
"ascending": false}'

Response will contain the history entries that match to our request.

All events of a user per specific time period

To obtain a list of all tracker events in the user received between the specified "from"
and "to" dates, use the history/user/list method. You can also filter the results to
include only the necessary event types.

Here are the required parameters for the call:

« from - a string containing the start date/time for the search.
* to - a string containing the end date/time for the search. Must be after from date.
You can also use optional parameters to narrow down your search:
* events - a string array with necessary event types. All other events will be ignored.
Default: all. To get a list of events, use the tracker/history/type call.
« limit - an integer specifying the maximum number of entries in the result.
+ ascending - a boolean value that sorts the results in ascending order by time when

setto true and descending when false.

For example, we want to get state field events for the last five minutes on all trackers of
a user. In this case, we will use to =CURRTIME and from =CURRTIME-5 minutes.
Filtering must be by state_field_control events.
cURL
curl -X POST 'https://api.navixy.com/v2/history/user/list' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "from":

"2023-06-13 18:42:10", "to": "2023-06-13 18:47:10", "events":
["state_field_control"], "limit": 100, "ascending": true}'

Response will contain the history entries that match to our request.

Last update: August 1, 2023

../../resources/commons/history/history_user/

How to get push notifications for your app

You can subscribe your app to work with push notifications. They allow you to get new
events immediately and without requesting such an event with an API call. These
notifications could be used by your program for triggering some actions with trackers,
configs, tasks, sending them into your Telegram bot, etc.

Apps can be mobile or web-based. In each case, you need to subscribe it for push
notifications differently. Let's examine each of these cases separately.

Mobile apps
At this moment the platform supports Firebase Cloud Messaging

To get push notifications on mobile devices, you need get app's push token. It may be

done in several steps:

1. Firebase projects support Google service accounts, which you can use to call
Firebase server APIs from the app server. To authenticate a service account and
authorize it to access Firebase services, you must generate a private key file in
JSON format.

2. Contact our support team (support@navixy.com) with the generated private key,
platform (Android/iOS) and your app's name.

3. We will provide you with the application for an API call to bind your app.
4. Get the push token of your app from Google Play Market or App Store.

5. Then use the push_token/bind API call from your app. Substitute the push token and
received from our support team application ID into it.

Web apps
In order for your web application to start receiving pushes, do the following steps:

When creating a subscription, you must specify the applicationServerKey. It should be in
BYTESs, not as a base64 string.

Our public key in base64 is

https://console.firebase.google.com/project/_/settings/serviceaccounts/adminsdk
https://firebase.google.com/docs/cloud-messaging/auth-server#provide-credentials-manually
https://firebase.google.com/docs/cloud-messaging/auth-server#provide-credentials-manually
mailto:support@navixy.com
https://web.dev/push-notifications-subscribing-a-user/#applicationserverkey-option

BKPE9c1lw-_CxWE-
W1qSkVpLnHT-7rE637udxtfGRUfXshjfCgatSNgNtRp5SHjwEukACcdhIPMwPc9Ch7UsZXXY

function example:

return navigator.serviceWorker
.register('/service-worker.js")
.then(function (registration) {
const subscribeOptions = {
userVisibleOnly: true,
applicationServerKey: urlBase64ToUint8Array(
"BKPE9c1lw-_CxWE-
W1gSkVpLnHT-7rE637udxtfGRUfXshjfCgatSNgNtRp5HjwEukACcdhIPMwPXc9Ch7UsZX
),
b

return registration.pushManager.subscribe(subscribeOptions);
H)
.then(function (pushSubscription) {
console.log(
'Received PushSubscription: ',
JSON.stringify(pushSubscription),
15
return pushSubscription

})

Take the endpoint and keys p256dh and auth from the pushSubscription object.

example:
{
"endpoint": "https://some.pushservice.com/something-unique",
"keys": {
"p256dh":

"BIPUL12DLfytvTajnryr2PRdAgXS3HGKiLgndGcJGabyhHheJY1INGCeX11dn18gSJ1WAk
"auth": "FPssNDTKnInHVndSTdbKFw=="

}
}

Use the push_token/bind API call with parameters:

+ application=w3c_pushapi

« token=whole endpoint from pushSubscription, full URL like https://
fcm.googleapis.com/fcm/send/f6kicrBn7S0:APA91b......

- parameters=object with keys from pushSubscription {"p256dh": "...", "auth™:"..."}

You will receive the notification in event.data in JSON format.

Last update: February 8, 2024

https://fcm.googleapis.com/fcm/send/f6kicrBn7S0:APA91b
https://fcm.googleapis.com/fcm/send/f6kicrBn7S0:APA91b

How to create and assign tasks

Tasks are a handy feature for the Field Service. This tool allowed planning and
monitoring the work of field workers. The number of possible goals for tasks is truly
great. You can use them for service, delivery, transportation, merchandising, trade, and
more. The employee will receive all the necessary information for the day and time,
addresses, task description, contact numbers, etc.

To start work with tasks, they must be created. It will be a task with one point or
several? This will determine whether we create a single task, or a route task.

Single task
Creation of a new single task.
The list of necessary parameters is next:

task - a JSON object that contains all necessary information about the task.
create_form - a boolean parameter that responsible for a form creation for this task. If
true then check additional form_template_id field in task object and create form
template if it is not null. Default value is false for backward compatibility.

For example, we want to create the next task:

George will deliver new devices to the office on 16th of March, from 12 to 2 PM. His car
has a tracker with ID 203190. Today may be some traffic jams that's why he may be late
on one hour. Also, | know that he needs 30 minutes to get to the office, put in new
devices, and fill in documents.

In this case, the task object will have the next parameters:

* tracker_id -to which tracker this task should be assigned.
* location - where the task should be.

* label -the name of a new task.

« description - a note about the task.

« from and to - when the task should be completed.

+ max_delay -the employee may be late with the execution for a maximum of this
time in minutes.

* min_stay_duration - the task will not be considered completed if the employee
spends less than this time in the task's zone.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/task/create' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b", "task":
{"tracker_id": 203190, "location": {"lat": 34.178868, "lng":
-118.599672, "radius": 150}, "label": "New devices to office",
"description”: "16 new devices", "from": "2021-03-16 12:00:00",
"to": "2021-03-16 14:00:00", "max_delay": 60, "min_stay_duration":
30}, "create_form": false}'

The response will contain ID of a new task.

{
"success": true,
"id": 111
}
Route task

Creation of a new route task.
The list of necessary parameters is next:
* route - JSON object containing all necessary information about the route without
IGNORED fields.
* checkpoint - array of checkpoint objects without IGNORED fields.

* create_form - boolean. If true then check additional form_template_id field in
every checkpoint object and create form if it is not null. Default value is false for
backward compatibility.

For example, we need to create the next route:

John needs to deliver our products to three customers on 18th of March, from 10 AM to
4 PM. His car has a tracker with ID 669673. He can't get late because our customers
will wait for production at the exact time and if he is late - the checkpoint will be
considered failed. This is how we know about the quality of delivery. Also, | know that
he needs a minimum of 10 minutes to hand over the goods to the client and fill out the
documents.

In this case, every checkpoint object will have the next parameters:

* tracker_id - an ID of the tracker to which checkpoint should be assigned.

+ location - location associated with this checkpoint. cannot be null.

« label -the name of the checkpoint.
+ description - a note about the checkpoint.
« from and to -the time when this checkpoint should be completed.

« external_id -this is a delivery code. It is necessary for a checkpoint because |
have the plugin "Courier on the map". Customers can specify this ID to the plugin
and see - where the driver at the moment.

* max_delay -the employee may be late with the execution for a maximum of this
time in minutes. In our case, it is 0 minutes.

* min_stay_duration -the task will not be considered completed if the employee
spends less than this time in the task's zone.

+ tags - for every client, | created a tag. This allows me to keep statistics and
facilitate the search for delivery to this particular client.

« form_template_id - when employees hand over the objects, they fill this form that
contains information about the quality of delivery, photos of delivered products, bill,
and customer's signature.

The route object will have its own parameters too:

« tracker_id - an ID of the tracker to which a route should be assigned.
* label -route name.
« description - additional information about the whole route.

« from and to -the time when this route should be completed.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/task/route/create’' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d04da2celaf111b", "route":
{"tracker_id": 669673, "label": "Products delivery",
"description”: "12 trackers of model 1 and 37 trackers of model
2", "from": "2020-083-18 10:00:00", "to": "2020-03-18 16:00:00"},
"checkpoints": [{"tracker_id":669673, "location":{"lat":

34.178868, "1ng":-118.599672, "radius":

100}, "label" :"Company1", "description":"5 trackers of model 1 and
15 trackers of model 2", "from":"2021-03-18

10:00:00", "to":"2021-03-18

12:00:00", "external_id":"10100", "max_delay":0, "min_stay_duration":
10, "tags":[1,4],"form_template_id":132985}, {"tracker_id":

669673, "location":{"lat":33.492830,"1ng":-112.177673, "radius":
100}, "label" :"Company2", "description":"4 trackers of model 1 and
12 trackers of model 2", "from":"2021-063-18

10:00:00", "to":"2021-03-18

14:00:00", "external_id":"101081", "max_delay":0, "min_stay_duration":
10, "tags":[2,4],"form_template_id":132985}, {"tracker_id":

669673, "location":{"lat":39.801066, "1ng":-105.028685, "radius":
100}, "label" :"Company3", "description":"3 trackers of model 1 and
10 trackers of model 2", "from":"2021-03-18

10:00:00", "to":"2021-03-18

16:00:00", "external_id":"10102", "max_delay" :0, "min_stay_duration":
10, "tags":[3,4],"form_template_id":132985}], "create_form": false}'

The response will be:

{
"success": true,
"result": {
"id": 7115375,
"user_id": 184541,
"tracker_id": 669673,
"label": "Products delivery",
"description”: "12 trackers of model 1 and 37 trackers of
model 2",

"from": "2021-063-18 10:00:00",
"to": "2021-03-18 16:00:00",
"creation_date": "2021-03-17 14:45:49",
"status": "assigned",
"status_change_date": "2021-03-17 14:45:49",
"origin": "manual",
"checkpoint_ids": |

7115376,

7115377,

7115378
1,
"external_id": null,
"type": "route"

Route optimization

If we need to get the optimized route that will minimize transit time and costs, it may be
beneficial to reorder route checkpoints before route creation. Our platform provides a
way to perform such optimization. Provide data required to optimize, and the algorithm
returns order in which points should be visited. Specify checkpoint objects in this order
when you will create the route.

Necessary parameters:

* start_point - JSON object with the point and time from that our driver will start
the move.

* route_points - an array of JSON objects with points and time that driver should

visit.
APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/task/route/points/optimize’
\

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b",
"start_point": {"lat": 34.178868, "lng": -118.599672, "departure":
"2021-03-18 10:00:00"}, "route_points": [{"location":{"lng":
33.492830, "lat":-112.177673}, "from" :"2021-03-18
10:00:00", "to":"2021-03-18 12:00:00"}, {"location":{"1ng":
39.801066, "lat":-105.028685}, "from" :"2021-83-18
10:00:00", "to":"2021-03-18 14:00:00"}, {"location":{"lat":
35.365948, "1ng":-108.112104}, "from" :"2021-03-18
10:00:00","to0":"2021-03-18 16:00:00"}]}"

Response will consist the order in that checkpoint objects should be specified in

checkpoints parameter of route creation:

{
"success": true,
"result": [
9,
g
2
]
}

Association with address

To associate the task or checkpoint with an address it should be specified in the
location object. In this case, location object in the create action will have an additional

field - address. To get an address when you have location use the geocoder/
search_location call.

Last update: January 15, 2024

Forms usage

Task forms can be used in many areas of business. Delivery, sales, inspections,
customer surveys, field reports. The results can be used to improve certain areas of
your business, concentration in an area, or market analysis. The forms can be filled out
by employees using the X-GPS tracker application. Employees can fill out forms when
completing tasks or sending check-ins.

Forms creation

To make it possible for employees to fill out forms, and for users to assign these forms
to tasks, the form templates must be created. Let's create a form for different needs.
For example, we have a delivery service. Customers order certain products, such as
trackers, which are delivered and, if necessary, installed by our staff. Find form fields
that will be used here.

We expect to see results on every task that's why we create a form that should be
submitted only in a zone of a task. It is necessary to avoid task completion after our
employee visited and spent some time in a task point. All fields we create are required
to submit except one.

* The first field will be a text field to get customer's and company's name.

* The second text field will contain information about what was delivered to our
customer.

* The third we will use is a checkbox field where additional provided services will be
checked. Minimum checked fields 1, maximum 3 and this field will be not required
because if our customer will not order additional options our employee will be
unavailable to send this form and complete a task. *Also, we add a signature field.
It will help us to confirm that the customer received the order.

APl request:

../../resources/field_service/form/field-types/

cURL

curl -X POST 'https://api.navixy.com/v2/form/template/create’ \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "template":
{"label": "Trackers delivery", "description": "Employee, fill this
form with every delivery", "fields": [{"id": "Text-1", "type":
"text", "label": "Customer's name", "required": true,
"description"”: "Specify here customer's and company's name",
"max_length": 1000, "min_length": 1}, {"id": "Text-2", "type":
"text", "label": "Delivered", "required": true, "description": "Specif
here all delivered models and its amount", "max_length": 1000,
"min_length": 1}, {"id": "Checkbox", "type": "checkbox_group",
"label": "Additional options", "description": "Specify here all
provided additional options", "group": [{"label": "Presentation
and training"}, {"label": "Additional configuration"}, {"label":
"Installation"}], "max_checked": 3, "min_checked": 1, "required"
false}, {"id": "Signature", "type": "signature", "label":
"Customer's signature", "description": "Let a customer add his
signature about receiving the order", "required": true}],
"submit_in_zone": true, "default": true}}'

The platform will respond with:

{
"success": true,
"id": 111
}
Form filling

Forms can be filled in two ways:

+ Check-in. An employee sends information about his location with a filled form.
Every employee of a user can choose a created form to send it with check-ins.
Additional assigning is not necessary.

+ Task completion. An employee performs a task and sends a form as progress
report. A form should be assigned to a task before an employee will have a
possibility to fill it in a task completion zone.

Form assigning

A form can be assigned to an existing task with task update call or can be used in the

process of task creation.

. create_form parameter should be false to add an already created form.

Obtaining information from submitted forms

We can get submitted forms to analyze all information our employees specified in
several ways.

Specific forms as they sent in tasks

+ Obtain a list of templates to get a template_id of a form we are interested in.

+ Obtain the list of tasks with the necessary form template_id and per specific time
period.

+ With this task_id we can request downloading or reading the necessary form.
Or

+ Get a list of tasks to find a specific task and obtain a form_id from it.

+ Use this form_id to read and download forms.

Specific forms as they sent in check-ins

+ Obtain a list of check-ins to get form_id we are interested in.

+ Use this form_id to read and download forms.
To get counted information in the report format

+ Generate a form completion report with plugin_id 70.

* Download this report.

Last update: August 1, 2023

How to work with statuses

Statuses are used to track current employee activity (in fact, of tracking devices owned
by employees). The simplest example is "busy" | "not busy". This is a status listing
consisting of two elements (working statuses). Different trackers can be assigned
different status lists.

Create

We need to create a working status list that we will assign to the device. Based on the
working statuses that are created for the sheet - we will have a choice - what working
status can be assigned to the tracker.

To create the working status list we need only one parameter: * listing - status_listing
object without "id" and "entries" fields.

For example, we will create a working status list for the delivery service to allow drivers
and supervisors to change the working status. Drivers can change their working status
using the X-GPS app. Supervisors can change working status using the Ul.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/status/listing/create’ \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "listing":
{"label": "Delivery_service", "employee_controlled": true,
"supervisor_controlled": true}'

The response will contain ID of a new working status list:

"success": true,
"id": 1111

When we created a working status list, we need to fill it with working statuses, and we
should use one request per one working status.

For example, we have 4 working statuses: "Free", "Break", "Pick up the goods from

storage”, "Deliver goods".

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/status/create' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b", "listing_id":
1111, "status": {"label": "Free", "color": "E57373"}}

The response will contain ID of a new working status:

{
"success": true,
"id": 1
}
Assign

To assign the working status list to some devices, we use the tracker_id and
listing_id.

For example, we have 10 drivers. We should create 10 requests for assigning the
working status list to them.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/status/listing/tracker/
assign' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b", "tracker_id":
615487, "listing_id": 111}’

The platform will notify you about success in reply.

After that, our drivers and supervisors will have access to change working statuses.
Where they could be used: We can create a script that will assign a new task to a driver
with the working status "Free". After assigning the task, this script will change the
working status itself to "Pick up the goods from storage". Or when the task was
completed, a script changes the working status to "Free" and gets fields from the ERP
system, parses them to create a new task assigns this task to a driver and so on.

Last update: December 26, 2022

How to send commands to device via GPRS

Many devices can be reconfigured using GPRS commands. If we have commands in a
protocol-dependent manner, and the device is online - we are able to change the
device's configuration, or create an app for sending commands to devices from the Ul
by users. Also, that app can allow users to customize commands according to their
needs.

Another way of usage is to bind commands sending to the rules, status changing, some
parameters triggering. The count of possible variations is great.

Sending of a command

To send a command to a device we need only the next two parameters:

tracker_id - ID of the device to which we want to send the command. command - Text
or hexadecimal representation of the command in a protocol-dependent manner.

For example, we have a Teltonika FMB140 device with ID on the platform 231402. And |
want to send a command to reconfigure its IP address to a new one 52.57.1.136.
According to the protocol the command should be the next:

setparam 2004:52.57.1.136
APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/tracker/raw_command/send' \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "tracker_id":
231402, "command": "setparam 2004:52.57.1.136"}"

The platform will notify you about success in reply.

Last update: November 10, 2021

How to obtain report's information

Reports consider information that can be used to manage your fleet successfully.
Sometimes it is necessary to get a report's information that can be used in programs or
specific reports in needs for business. For example, necessary information about trips +
fuel consumption, drains and refills. Follow the next steps, to obtain report's
information.

Generate report

To receive data for processing, it must be generated. This can be done using a call
report/tracker/generate.

Parameters that necessary for this call:

« from - A string containing date/time. Data in a report will be from that moment.

* to - A string containing date/time. Specified date must be after from date. Data in
a report will be till specified moment.

« title - Report title. Default title will be used if null.
* trackers - List of trackers' IDs to be included in report (if report is by trackers).

« employees - List of employees' IDs to be included in report (if report is by
employees).

+ time_filter - An object which contains everyday time and weekday limits for
processed data, e.g. {"to":"18:00", "from":"12:00", "weekdays":
[(1,2,3,4,5]}.

* plugin - A plugin object. The list of all report plugins.
APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/generate’' \

-H 'Content-Type: application/json' \

-d '{"hash": "abaa75587e5c59c32d347da438505fc3", "title":
"Trip report", "trackers": [669673], "from": "2026-10-85
00:00:00", "to": "2020-10-06 23:59:59", "time_filter": {"from":
"00:00:00", "to": "23:59:59", "weekdays": [1,2,3,4,5,6,7]},
"plugin": {"hide_empty_tabs": true, "plugin_id": 4,
"show_seconds": false, "include_summary_sheet_only": false,
"split": true, "show_idle_duration": false, "show_coordinates":
false, "filter": true, "group_by_driver": false}}'

../get-tracker-list/
../../resources/commons/plugin/report_plugins/

It will respond with generated report_id.

"success": true,
"id": 222

Retrieve report

To obtain all generated analytic data from the report in JSON format use report/tracker/

retrieve.
Use the report_id from the previous call response.
APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/retrieve’ \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "report_id":
1234567}

HTTP GET
https://api.navixy.com/v2/report/tracker/retrieve?

hash=a6aa75587e5¢c59¢32d347da438505fc3&report_id=1234567

You will get the report in a JSON format:

. Response

{
"success": true,
"report": {
"created": "2020-10-066 16:01:46",
"time_filter": {
"from": "00:00:00",
"to": "23:59:59",
"weekdays": [
1,
2
3,
4,
5,
6,
7
]
Jo
"title": "Trip report",
"id": 5602232,
"sheets": |
{
"header": "Samantha (Ford Focus)",
"sections": [
{
"data": [
{
"rows": [

{
"to": {
"v": "02:39 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601941188000.0,
"type": "value",
"location": {
"lat": 54.9218516,
"lng": 37.335545

bo
"from": {
"v": "00:47 - Selyatino, Naro-
Fominskii gor. okrug, Moscow Oblast, Russia, 143370",
"raw": 1601934439000.0,
"type": "value",
"location": {
"lat": 55.5311083,
"lng": 36.96743

b

"time": {
“v': "@1:52",
"raw": 6749.0,
"type": "value"

b

"length": {
“v': "106.29",
"raw": 106.29,
"type": "value"

tH

"avg_speed": {

“v": "57",
"raw": 57.0,
"type": "value"
b
"max_speed": {
“v"i o "94",
"raw": 94.0,
"type": "value"
}
Vo
{
"to": {

"v": "05:10 - Selyatino,
Fominskii gor. okrug, Moscow Oblast, Russia, 143370",
"raw": 1601950218000.0,
"type": "value",
"location": {
"lat": 55.5308216,
"lng": 36.967315

P
"from": {
"v": "@3:11 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601943083000.0,
"type": "value",
"location": {
"lat": 54.9218116,
"lng": 37.3354833

b
"time": {
“v": "01:58",
"raw": 7135.0,
"type": "value"
b
"length": {
“v'": "106.97",
"raw": 106.97,
"type": "value"
b
"avg_speed": {
“v":i "54",
"raw": 54.0,
"type": "value"
b
"max_speed": {
“v"io "94",
"raw": 94.0,
"type": "value"

"v'": "07:54 - Khievskii
pereulok, 10, TNKh, Rassudovo, Troitsky Administrative Okrug,
Moscow, Russia, 143340",

"raw": 1601960075000.0,

"type": "value",

Naro-

Fominskii gor.

Moscow Oblast,

pereulok,
Moscow, Russia,

10, TNKh,

okrug,

Russia,

Rassudovo,

"location": {
"lat": 55.4666366,
"lng": 36.9216966

bo
"from": {
"v": "@7:38 - Selyatino,
Russia, 143370",
"raw": 1601959081000.0,
"type": "value",
"location": {
"lat": 55.53122,

“Ing": 36.9672916

Moscow Oblast,

b
"time": {
“v'": "00:16"
"raw": 994.0,
"type": "value"
b
"length": {
"v": "10.03",
"raw": 10.03,
"type": "value"
b
"avg_speed": {
"v": "36",
"raw": 36.0,
"type": "value"
b
"max_speed": {
"v": "85",
! ": 85.0,

raw
"type": "value"

"to": {
"v': "09:36 - Serpukhov,
142253",
"raw": 1601966165000.0,
"type": "value",
"location": {
"lat": 54.926835,

"Ing": 37.3341066

T
“from": {
"v'": "07:58 - Khievskii
Troitsky Administrative Okrug,

143340",

raw 1601960315000.0,
"type": "value",
"location": {

"lat": 55.46661,
"lng": 36.9216516

“v': "01:37",
58560.0,

Naro-

"type": "value"

Bo
"length": {
"v": "95.31",
"raw": 95.31,
"type": "value"
Bo
"avg_speed": {
"v'": "59",
"raw": 59.0,
"type": "value"
Bo
"max_speed": {
"v'": "91",
"raw": 91.0,
"type": "value"
}
bo
{
"to": {
"v": "09:53 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601967190000.0,
"type": "value",
"location": {
"lat": 54.921935,
"lng": 37.33551
}
bo
"from": {
"v": "09:43 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601966585000.0,
"type": "value",
"location": {
"lat": 54.9264033,
"lng": 37.3336633
}
bo
"time": {
“v': "@0:10"
"raw": 605.0,
"type": "value"
bo
"length": {
"v'": "0.95",
"raw": 0.95,
"type": "value"
bo
"avg_speed": {
"v': "e",
"raw": 6.0,
"type": "value"
bo
"max_speed": {
"v'": "13",
"raw": 13.0,
"type": "value"
I3

"to": A

\

Fominskii gor. okrug, Moscow Oblast,

raw
“type“:

Russia,

"12:36 - Selyatino, Naro-
143370",
1601977017000.0,

"value",

"location": {

e

"from":

\

Moscow Oblast, Russia, 142253",

raw
“type“:

"lat":
"lng":

55.5309666,
36.9674183

"10:27 - Serpukhov,

1601969226000.0,
"value",

"location": {

raw
"type":

e

"length":

\

raw
"type":

e

"lat":
"lng":

54.92199383,
37.335495

"02:09",
: 7791.0,
"value"

{
"108.48",

108.48,
"value"

"avg_speed": {

\

"sg"

"raw": 50.0,

"type" :

e

"value"

"max_speed": {

\

raw
"type":

"to": {

v
ozero\", gor. okrug Serpukhov,

142279",

Dernopol'e,

raw
”type":

"gg"
89.0,
"value"

"16:01 - KhP \"Lesnoe
Moscow Oblast, Russia,

1601989300000.0,
"value",

"location": {

5

"from":

\

Fominskii gor. okrug, Moscow Oblast,

raw
”type":

"lat":
"lng":

Russia,

54.9875133,
37.3093183

"13:34 - Selyatino, Naro-
143370",
1601980444000.0,

"value",

"location": {

"lat":
"lng":

55.5309966,
36.96738

}

Bo

"time": {
"v": "02:27",
"raw": 8856.0,
"type": "value"

Bo

"length": {
"v": "95,79",
"raw": 95.79,
"type": "value"

Bo

"avg_speed": {
"v": "39",
"raw": 39.0,
"type": "value"

Ws

"max_speed": {
"v": "88",
"raw": 88.0,
"type": "value"

}

}
s
"total": {
"text": "In total:",
"time": {
"v": "10:33",
"raw": 379860.0,
"type": "value"
b
"length": {
"v": "523.8",
"raw": 523.8,
"type": "value"

b
"avg_speed": {
“v": "50",
"raw": 50.0,
"type": "value"
b
"max_speed": {
“v'io "94",
"raw": 94.0,
"type": "value"
}

bo
"header": "Oct 6, 2020 (Tue)
}
I,
"type": "table",
"header": "Trips",
"columns": [

{

"align":
"field":
"title":
"width":

"left",

"from",

"Movement start",
4,

"weight": 3,
"highlight_min_max": false

7"

b
{

}
I,

"align":
"field":
"title":
"width":
"weight"

"left",

"to"

"Movement end",
4,

$3,

"highlight_min_max": false

"align":
"field":
"title":
"width":

"weight":

"right",

"length",

"Total trips length, \nkm",
P

9,

"highlight_min_max": false

"align":
"field":
"title":
"width":
"weight"

"right",
"time",
"Travel time",
1

’

.0,

"highlight_min_max": false

"align":
"field":
"title":
"width":
"weight"

"right",

"avg_speed",

"Average speed, \nkm/h",
1,

.0,

"highlight_min_max": false

"align":
"field":
"title":
"width":

"weight":

"right",
"max_speed",

"Max. speed, \nkm/h",
1,

0,

"highlight_min_max": false

"column_groups":

"rows":

[]

[

TR TS

"raw": 7.0,
"name": "Trips",

"highlight": false

"y": "523.8"
"raw": 523.8,
"name": "Total trips length, km",

"highlight": false

"yt "19:33"
"raw": 633.0,

"name" :

'Travel time",

"highlight": false

b
{
"v'": "50",
"raw": 50.0,
"name": "Average speed, km/h",
"highlight": false
bs
{
v "94",
"raw": 94.0,
"name": "Max. speed, km/h",
"highlight": false
b
{
"v": "515855",
"raw": 515855.0,
"name": "Odometer value *, km",
"highlight": false
}
1,
"type": "map_table",
"header": "Summary"
b
{
"text": "Odometer value at the end of the
selected period.",
"type": "text",
"style": "small_print"
}
Il
"entity_ids": [
311852

1,
"additional_field": ""
}
1,
"from": "2020-10-06 00:00:00",
"to": "2020-10-06 23:59:59"

Deleting reports

When the information has been received and processed, there is no need to leave the
generated report. It can be removed. Use report/tracker/delete.

Use the report_id from generate call response.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/delete’ \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "report_id":
1234567}

HTTP GET

https://api.navixy.com/v2/report/tracker/delete?
hash=a6aa75587e5c59c32d347da438505fc3&report_id=1234567

Last update: December 26, 2022

Tags usage

“Tag” is a label for convenient and fast search of the desired information. In our system
tags help you find desired places, geofences, employees, tasks, trackers, and vehicles.
You can create custom tags according to your needs. One object may have several tags.
Tags are entities that could be assigned with objects.

Case

| need to get easier searching by objects. For example, we have several places that are
served by a certain team of employees, who in turn can only use the specified vehicles.
We also want to easily find the tasks that we set for these teams. To do this, we will
assign a specific tag to all these objects.

Creation
The first step is to create this tag. Let's name it "team1".
APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/tag/create’ \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "tag"
{"name": "teaml1", "color": "#0OBFFF"}}'

HTTP GET

https://api.navixy.com/v2/tag/create?
hash=a6aa75587e5c59c32d347da438505fc3&tag={"name": "teaml",
"color": "#@OBFFF"}

The platform will reply with the created tag id. We can find this tag using the tag/list
call.

Assigning

Now we need to assign this tag to our objects. We can do it using the update call for
these objects. Also, we can assign this tag to a new object while creating. It can be
done with adding the "tags" parameter to objects in these calls:

+ place object - update/create.

* task object - update/create.

« task_schedule object - update/create.

+ employee object - update/create.

+ vehicle object - update/create.

+ zone object - update/create.

- tracker object - There are no create and update calls for trackers. We should use
tags/set call for them.

Searching objects with tag

Tags assigned with objects. To find all these objects with information we should use

tag/search call.
For example:

cURL

curl -X POST 'https://api.navixy.com/v2/tag/search’ \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d04da2celaf111b", "tag_ids":
[1792271]1}"

HTTP GET
https://api.navixy.com/v2/tag/search?

hash=22eac1c27af4be7b9d0@4da2celaf111b&tag_ids=[179227]

The platform will provide us with objects with assigned tag in the response:

. Response

"success": true,
"result": {
"place": [
{
"id": 1446571,
"location": {
"lat": 34.178868,
"Ing": -118.599672,

"address": "21550 W Oxnard St, Woodland Hills,

CA 91367, USA",
"radius": 100

}

abel": "New place",
"description": "",
"external_id": null,
"tags": [

179227
]

"task": [

"id": 8280866,
"user_id": 184541,
"tracker_id": 669673,
"status": "assigned",
"status_change_date": "2021-06-17 12:41:52",
"tags": [
179227
I,
"label”: "New task ",
"description": "",
"external_id": null,
"creation_date": "2021-06-17 12:41:37",
"origin": "manual",
"location": {
"lat": 33.492830,
"Ing": -112.177673,
"address": "3836-3820 N 55th Ave, Phoenix,
85031, USA",
"radius": 152
b
"from": "2021-06-17 00:00:00",
"to": "2021-06-17 23:59:59",
"arrival_date": null,
"stay_duration": 9,
"min_stay_duration": 0,
"min_arrival_duration": @,
"max_delay": @,
"type": "task"

I,
"employee": [
{
"id": 55693,
"tracker_id": 669673,

AZ

"first_name": "Artem ,

"middle_name" : E

"last_name" : E
"email": "",
"phone": "",
"driver_license_number": "",
"driver_license_cats": "",
"driver_license_issue_date": null,
"driver_license_valid_till": null,
"hardware_key": null,
"department_id": null,
"location": {

"lat": 39.801066,

"lIng": -105.028685,

"address": "5735 Hooker St, Denver, CO 86221,

United States",

"radius": 150
o
"personnel_number": "1235341231",
"tags": [

179227
]

Last update: January 15, 2024

Vehicles and service works usage

Vehicle object is used to describe information about the vehicle. Its parameters include
the VIN, chassis number, license plate, type, dimensions, load capacity, size and number
of wheels, year of manufacture, fuel type used and consumption, as well as the
insurance number and its validity period. You can also link a vehicle to one of the
trackers.

For example, if the vehicle has an average fuel consumption, then we can see the
average fuel consumption per trip in the device's trip report. Also, information about the
mileage or engine hours can be used for timely maintenance.

For this purpose, service works are used, which can be applied to cost and risk
management. For example, if there is a fleet of several cars, it is necessary to service
each of them on time: to replace spare parts according to the spent resource, replace
wheels according to mileage, and so on. Know the cost of all the work and notify in
advance about the upcoming service work, so that you can order the necessary parts.

After all, service work not performed on time can lead to an undesirable outcome - the
car will break down, and the order will not be delivered to the customer at the right hour.
Not to mention the danger of losing the cargo completely or greatly reducing the service
life of the vehicle.

Vehicle creation

Let's create our first vehicle object. For example, we have a cargo van Ford Transit.

We should specify all information we have about this vehicle in the vehicle crete call. To
link vehicle with the tracker - specify its ID in parameter tracker_id.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/vehicle/create' \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59¢c32d347da438505fc3", "vehicle":

{"additional_info": "January 2621", "avatar_file_name": null,
"chassis_number": "", "color": "Blue", "frame_number": "",
"free_insurance_policy_number": "", "free_insurance_valid_till":
null, "fuel_cost": 4, "fuel_grade": "", "fuel_tank_volume": 880,
"fuel_type": "diesel"”, "garage_id": null, "gross_weight": null,

"icon_color": "1E96DC", "icon_id": null, "label": "Ford 53196",
"liability_insurance_policy_number": "54687965555er2152",
"liability_insurance_valid_till": "2022-061-12",
"manufacture_year": 2019, "max_speed": 100, "model": "Transit",
"norm_avg_fuel_consumption": 8.3, "passengers": 3,
"payload_height": 2550, "payload_length": 5531, "payload_weight
1529, "payload_width": 2859, "reg_number": "A53196BC", "subtype":
"minivan", "tags": [], "tracker_id": 841400, "trailer": null,
"type": "truck", "tyre_size": "R15", "tyres_number": 4, "vin"
"XTA235KM35698512", "wheel_arrangement": "4x2"}}'

The platform will respond with:

"success": true,
"id": 96175

« id - Itis ID of the created vehicle object.

Service work creation

Now we have a vehicle object with an assigned device. The data from a device about
mileage and engine hours can be used in our service works. For every part we should
create a separate service work.

For example, we bought new brakes and spark plugs and replaced the oil in the engine.
Brakes better to change after 65k km, spark plugs after 40k km, and engine oil after 150
engine hours.

We should create three service works then. Also, | want to be notified before | must
perform service work, that's why | will use advance notifications. We should use service
work create API call.

API request for oil:

cURL

curl -X POST 'https://api.navixy.com/v2/vehicle/service_task/
create' \

-H 'Content-Type: application/json' \

-d '"{"hash": "abaa75587e5c59c32d347da438505fc3", "task":
{"vehicle_id": 96175, "comment": "0il Ford Formula F 5W30",
"conditions": {engine_hours: {limit: 328, notification_interval:
18}}, "cost": 28, "description": "0il Change", "file_ids": [],
"notifications”: {sms_phones: ["79995699997"], emails:
["myemail@gmail.com"], push_enabled: true}, "repeat": false,
"unplanned": false}'

API request for brakes:

cURL

curl -X POST 'https://api.navixy.com/v2/vehicle/service_task/
create' \

-H 'Content-Type: application/json' \

-d '{"hash": "a6aa75587e5c59¢c32d347da438505fc3", "task":

{"vehicle_id": 96175, "comment": "ATE", "conditions": {mileage:
{limit: 78000, notification_interval: 75000}}, "cost": 200,
"description”: "Brakes Change", "file_ids": [], "notifications":

{sms_phones: ["79995699997"], emails: ["myemail@gmail.com"],
push_enabled: true}, "repeat": false, "unplanned": false}'

The platform will respond with ID of created service work:

"success" :true,
"id" :42401

Last update: July 19, 2022

Driver journals usage

Driver Journal logs all the trips an employee made during a selected time period and
groups them by their status: business, private or other. Users can choose to show either
the summary of all trips with highlighted trip statuses or to view the required status
only. The displayed data is already a finished document exportable as a PDF/Excel file
or printed out as it is.

Driver Journal itemizes all the trips, providing exact mileage, accurate location, date and
time, so clients can easily report business miles versus personal miles and deduct the
exact amount of business-related expenses (e.g., by percentage of the actual
expenses).

However, some situations are not that easy to identify. For those cases, use “other” trip
status (specific comments can be given in notes). Such trips can be reviewed
individually and using valid metrics be later converted to business or private as the case
might be.

All the trip data will be safely and securely stored in one digital place. No need to keep
the piles of paperwork. However, Revenue Services require to keep supporting receipts
(for gas/fuel) to prove the actual amount of expenses.

For example, you need to distribute all trips of the device for the last day and distribute
them by type in order to generate a bill for fuel payment. Also, they will contain
important information about trips like driver, who was assigned to a tracker, start/end
dates of the trip, start/end locations, length, start/end odometer values. You can
operate with this information or use it in your CRM.

Work with driver journals

Getting all possible trips per period for journal
In order to generate a driver journal, we first need to get a list of possible trips.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/driver/journal/proposal/
list' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "from":
"2021-10-26 00:00:00", "to": "2021-10-26 23:59:59", "tracker_id":
311852}

The platform will reply with the information about all trips per period:

"success" :true,
"list":[{

"tracker_id":311852,

"employee_id" :2183,

"start_date":"2021-10-26 00:00:00",

"end_date" :"2021-10-26 ©01:39:22",

"start_location" :{
"address":"Central'naya kol'cevaya avtomobil'naya doroga,

gor. okrug Istra, Moscow Oblast, Russia, 143540",

"lat":55.8906183,
"lng" :36.944505

b

"end_location": {
"address" :"Klin, Moscow Oblast, Russia, 1416609",
"lat":56.356175,
"lng":36.8077733

b

"length" :70.83,

"start_odometer" :620741.0,

"end_odometer":620812.0

"tracker_id":311852,
"employee_id" :2183,
"start_date":"2021-10-26 01:47:22",
"end_date" :"2021-10-26 ©3:30:58",
"start_location" :{
"address":"Klin, Moscow Oblast, Russia, 141609",
"lat":56.3562966,
"lng" :36.8079016
b
"end_location":{
"address":"S/kh Lesnye ozera, Pyatnickoe shosse, Novaya,
Moscow Oblast, Russia, 141591",
"lat":56.082615,
"lng":36.9091333
b
"length" :45.32,
"start_odometer" :620812.0,
"end_odometer" :620856.0

"tracker_id":311852,
"employee_id" :2183,

"start_date":"2021-10-26 03:37:58",

"end_date":"2021-10-26 04:53:18",

"start_location" :{
"address":"S/kh Lesnye ozera,

Moscow Oblast, Russia, 141591",

"lat":56.082615,
"1ng":36.9091333

b

"end_location":{
"address" :"Selyatino,

Oblast, Russia, 1088066",
"lat":55.5309516,
"lng":36.967255

b
"length" :77.6,

"start_odometer" :620856.0,
"end_odometer" :620934.0
1
}

Entries creation

Pyatnickoe shosse,

Naro-Fominskii gor.

Novaya,

okrug, Moscow

Once we have a list of all trips, we need to create a driver journal entries. In addition to
the received objects in the previous call, we must specify the type of entry to be

created, and we can add a comment to each of them.

APl request:

cURL

curl -X POST 'https://api.navixy.com/v2/driver/journal/entry/
create' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d0@4da2celaf111b", "entries":
[{{"tracker_id":311852, "employee_id":2183,
"start_date":"2021-10-26 00:00:00", "end_date":"2021-10-26
01:39:22", "start_location":{"address":"Central'naya kol'cevaya
avtomobil'naya doroga, gor. okrug Istra, Moscow Oblast, Russia,
143540", "lat":55.8906183, "lng":36.944505}, "end_location":
{"address":"Klin, Moscow Oblast, Russia, 141609", "lat":56.356175,
"lng":36.8077733}, "length":70.83, "start_odometer":620741.0,
"end_odometer":620812.0, "type": "work", "comment":
"order_ID=23415"},{"tracker_id":311852, "employee_id":2183,
"start_date":"2021-10-26 01:47:22", "end_date":"20621-10-26 03:
30:58", "start_location":{"address":"Klin, Moscow Oblast, Russia,
141609", "lat":56.3562966, "lng":36.8079016}, "end_location":
{"address":"S/kh Lesnye ozera, Pyatnickoe shosse, Novaya, Moscow
Oblast, Russia, 141591", "lat":56.082615, "lng":36.9091333},
"length" :45.32, "start_odometer":620812.0, "end_odometer":
620856.0, "type": "personal", "comment": "trip to a cafe"},
{"tracker_id":311852, "employee_id":2183, "start_date":"2021-10-26
03:37:58", "end_date":"2021-10-26 ©4:53:18", "start_location":
{"address":"S/kh Lesnye ozera, Pyatnickoe shosse, Novaya, Moscow
Oblast, Russia, 141591", "lat":56.082615, "lng":36.9691333},
"end_location":{"address":"Selyatino, Naro-Fominskii gor. okrug,
Moscow Oblast, Russia, 108866", "lat":55.5309516, "lng":
36.967255}, "length":77.6, "start_odometer":620856.0,
"end_odometer":620934.0, "type": "work", "comment":
"order_ID=31024"}]}"'

The platform will confirm creation with:

"success": true

Driver journal obtaining

After all entries have been created, we can download the driver journal in the format we

want by download API call.

To simply display the driver journal in a specialized application, for example, use the list
request.

Last update: August 1, 2023

Create check-ins via API

. Important

Check-ins are created using X-GPS Tracker. All the description below is necessary only
for exceptional cases, such as creating your Mobile Tracker app.

Step 1. Create a form from a template with checkin/form/create API call. In the X-GPS
Tracker, the form is created when the template is selected by a user.

Step 2. Create files for photos of check-in with checkin/image/create and upload photo
data (see below). In the X-GPS Tracker, checkin photos are created as each photo is
added.

Step 3. Create form files with checkin/form/file API call and upload their data (see
below). In the X-GPS Tracker, form files are created when they are added when the form
is filled out.

Step 4. Create a check-in itself with checkin/create API call, where all the data is
attached. If the form includes optional fields that should be left empty for your check-in,
simply refrain from adding these fields to the form submission object.

File upload process

This is how files can be uploaded to the platform. If you have multiple files to upload,
be sure to add a brief delay between uploading each one to ensure a smooth process.

Using the API calls checkin/image/create and checkin/form/file the app asks - may |
provide you with the file? This file has size of X MB, file name is example.png, metadata
of the image should be in EXIF format. This is already saved as metadata for your
image in this format, you need to copy this info and add into request as a JSON object.
The platform says, okay. I'm ready to receive this file from your app. It will provide you
with the location and token if it is a local storage on your server:

{

"success": true,

"value": {
"file_id": 111,
"url": "http://bla.org/bla",
"expires": "2020-02-03 03:04:00",
"file_field_name": "example.png",

"fields": {
"token": "a43f43ed4340b86c808ac"

And for Cloud version of the platform Amazon S3 is used:

{
"success": true,
"value": {
"file_id": 111,
"url": "https://bla.s3.amazonaws.com/",
"expires": "2020-02-03 03:04:00",
"file_field_name": "file",
"fields": {
"policy": "<Base64-encoded policy string>",
"key": "user/userl1/${filename}",
"success_action_status": "200",

“X-amz-algorithm": "AWS4-HMAC-SHA256",

"x-amz-credential": "AKIAIOSFODNN7EXAMPLE/26151229/us-east-1/
s3/aws4_request"”,

"x-amz-date": "20151229T000000Z",

"X-amz-signature": "<signature-value>",
"Xx-amz-server-side-encryption": "AES256",
"“content-type": "image/png"

After it, the app must send the file. It should contain information from the platform's
reply to the app's request.

Here's an example of upload you must make after receiving such response (assuming
you uploading image named actual_file_name.png):

Internal storage example:

POST /bla HTTP/1.1 - part of URL after the host part.
Host: bla.org - only the host part.
Content-Length: 1325 - The content length in this case is the size
of data being sent, measured in bytes.
Origin: http://bla.org

other headers
Content-Type: multipart/form-data; boundary=----
WebKitFormBoundaryePkpFF7tjBAgx29L - boundary is a marker used to
separate the different pieces of data sent in a multipart form. It
can be generated by the app randomly.

—————— WebKitFormBoundaryePkpFF7tjBAqx29L
Content-Disposition: form-data; name="token"

a43f43ed4340b86c808ac - here add the token, received from the
platform

—————— WebKitFormBoundaryePkpFF7tjBAqx29L
Content-Disposition: form-data; name="example.png";
filename="example.png" - the file name.
Content-Type: image/png

contents of file goes here ... The contents of the file in
a .png or other format will depend on the image itself but
generally it will be composed of binary data that represents the
colors and shapes of the image.
—————— WebKitFormBoundaryePkpFF7tjBAqx29L--

Amazon S3 example:

POST / HTTP/1.1 - part of URL after the host part
Host: https://bla.s3.amazonaws.com - only the host part.
Content-Length: 1972 - The content length in this case is the size
of data being sent, measured in bytes.
Origin: https://bla.s3.amazonaws.com/

other headers
Content-Type: multipart/form-data; boundary=WebAppBoundary -
boundary is a marker used to separate the different pieces of data
sent in a multipart form. It can be generated by the app randomly.

--WebAppBoundary
Content-Disposition: form-data; name="policy"
Content-Type: text/plain

eyJleHBpcmFOaW9uIljogIjIwMjMtMDMtMjdUMjE6MTU6MZzYuMDczn1dfQ==
--WebAppBoundary

Content-Disposition: form-data; name="key"

Content-Type: text/plain

nj9relvem52qpB1tOwv47wyk10zd309g/${filename}
--WebAppBoundary

Content-Disposition: form-data; name="success_action_status"
Content-Type: text/plain

200

--WebAppBoundary

Content-Disposition: form-data; name="x-amz-algorithm"
Content-Type: text/plain

AWS4-HMAC-SHA256

--WebAppBoundary

Content-Disposition: form-data; name="x-amz-credential"
Content-Type: text/plain

AKIAIBQ6SRB65EVSSRMA/20230327/eu-central-1/s3/aws4_request
--WebAppBoundary

Content-Disposition: form-data; name="x-amz-date"
Content-Type: text/plain

20230327T72100367Z

--WebAppBoundary

Content-Disposition: form-data; name="x-amz-signature”
Content-Type: text/plain

2df7efaBcBedc5b97d0d9483acd77¢c9ec37360df921b019a4c4a93180a6136ad
--WebAppBoundary

Content-Disposition: form-data; name="x-amz-server-side-encryption"
Content-Type: text/plain

AES256

--WebAppBoundary

Content-Disposition: form-data; name="file";
filename="actual_file_name.png"
Content-Type: image/png

contents of file goes here
--WebAppBoundary--

Last update: August 1, 2023

Tracking of stationary objects

Any object can be integrated into the Internet of Things. The platform allows tracking
not only movable objects but also stationary ones, like heavy equipment, agricultural
equipment, cargo, goods, or security equipment. Installing GPS devices on each of
these objects can be very expensive. Instead, it's more cost-effective to install one
device on a vehicle or site and track all others with cheaper BLE tags.

In this tutorial, we'll discuss how to organize tracking for stationary objects, which GPS
devices and tags will help gather the necessary data, and how to set them up using
truck trailers as an example. We'll also cover how to obtain information about trips and
usage for subsequent service work and what API calls will provide information about
the tags. Additionally, we'll share other use cases based on real situations.

Find this instruction including BLE sensors configuration example in our Expert center.

What you need to track stationary objects

Various devices are able to read data from BLE beacons: Galileosky, Quecklink, Ruptela,
Teltonika, TopFlyTech. We will describe on example of Teltonika FMB920 model and BLE
beacon Eye Sensor. To begin tracking stationary objects, you'll need the following: 1. A
GPS device that can read BLE tags and is supported by the platform.

1. BLE tags that are compatible with the GPS device. It's worth noting that many BLE
tags can transmit information about temperature and humidity, as well as their
battery charge. This enhances the ability of these tags to track information, but for
our purpose, we'll focus on stationary objects specifically.

2. Platform APIs that provide information about which GPS device a particular tag is
near. To create custom solutions for your users using APls, you'll need developers.
Clients typically hire their own developers or contract third-party teams.

Now let's examine the procedure for implementing a real-world case study - tracking
truck trailers for trip and usage information and subsequent service work.

https://docs.navixy.com/expert-center/tracking-of-stationary-objects

How to get information about BLE beacons near the GPS
device

On the platform side, there's a BLE beacon data entry object:

{
"tracker_id": 10181654,
"hardware_id": "7c¢f9501df3d6924e423cabcde4c924ff",
"rssi": -101,
"get_time": "2023-04-17 17:14:42",
"latitude": 50.3487321,
"longitude": 7.58238,
"ext_data": {
"voltage": 3.075,
"temperature": 24.0
}
}

You can read information from it:

« tracker_id -int. An ID of the tracker (aka "object_id").
* hardware_id - string. An ID of the beacon.

* rssi -int. RSSI stands for received signal strength indicator and represents the
power of received signal on a device. According to it, you can understand how far
away the beacon is from the tracker.

« get_time - date/time. When this data received.
+ latitude - float. Latitude.
+ longitude - float. Longitude.

+ ext_data - object. Additional beacon data.

API calls to get information about BLE tags

There are two API calls that allow you to get all the necessary information about BLE
beacons:

Historical data from BLE tags

The first call retrieves historical data from devices. You can set the from and to
parameters for obtaining data during a specific period about connected BLE beacons.
Since we need the information from the BLE tags' point of view, i.e., the trailers, let's
request the information using the beacons parameter.

Request example:

cURL

curl -X POST 'https://api.navixy.com/v2/beacon/data/read’ \

-H 'Content-Type: application/json' \

-d '{"hash":"59be129c1855e34ea%eb272b1e26ef1d", "from": "2023-04-17
17:00:00", "to": "2023-04-17 18:00:00", "beacons":
["7¢cf9501df3d6924e423cabcde4c924ff"]}

This will show which devices were in the vicinity of this BLE beacon during period.

{
"list": [
{
"tracker_id": 106181654,
"hardware_id": "7c¢f9501df3d6924e423cabcde4c924ff",
"rssi": -101,
"get_time": "2023-04-17 17:05:42",
"latitude": 50.3487321,
"longitude": 7.58238,
"ext_data": {
"voltage": 3.075,
“"temperature": 24.0
}
Jod
b
{
"tracker_id": 106181654,
"hardware_id": "7cf9501df3d6924e423cabcde4c924ff",
"rssi": -101,
"get_time": "2023-04-17 17:40:22",
"latitude”: 55.348890,
"longitude": 6.59403,
"ext_data": {
"voltage": 3.075,
"temperature": 24.0
}
H,
"success": true
}

Last data from BLE tags

The second call retrieves information about currently connected beacons to a specific
device. For example, if you want to know which trailer is currently near the device, use
the following request:

Request example:

cURL

curl -X POST 'https://api.navixy.com/v2/beacon/data/last_values' \
-H 'Content-Type: application/json' \
-d '{"hash":"59be129c1855e34ea9eb272b1e26ef1d", "trackers":
[16181654], "skip_older_than_seconds": 1200}

This will provide information that there's a trailer "7cf..." next to the device.

{
"list": [
{
"tracker_id": 10181654,
"hardware_id": "7c¢f9501df3d6924e423cabcde4c924ff",
"rssi": -101,
"get_time": "2023-04-17 17:40:22",
“latitude": 55.348890,
"longitude”: 6.59403,
"ext_data": {
"voltage": 3.075,
"temperature": 24.0
}
Pl
"success": true
}

How to obtain information on usage times and trip details

We've already gathered historical data using the first of the presented API calls, which
showed on which devices the trailer was displayed at a specific time. To get information
about the journeys and usage time of this trailer, we simply need to use one of the two
API calls:

Overall trip info

API call track/list to get trip information for the period. This will provide general
information about the trips, such as where and when they started and ended, maximum
speed, mileage, and more.

Request example:

cURL

curl -X POST 'https://api.navixy.com/v2/beacon/data/last_values' \
-H 'Content-Type: application/json' \
-d '{"hash":"59be129c1855e34ea9eb272b1e26ef1d", "trackers":
[10181654], "skip_older_than_seconds": 1200}

Response:

"id": 11672,
"start_date": "2023-04-17 17:05:42",
"start_address": "10470, County Road, Town of Clarence, Erie

County, New York, United States, 14031",
"max_speed": 62,
"end_date": "2023-04-17 17:40:22",
"end_address": "Fast Teddy's, 221, Main Street, City of
Tonawanda, New York, United States, 14150",
"length": 18.91,
"points": 59,
"avg_speed": 49,
"event_count": 3,
"norm_fuel_consumed": 6.32,
"type": "regular",
"gsm_lbs": false

From this data, we can see that the trip lasted nearly 35 minutes (end_date - start_date),
with an average speed of 49 km/h and a maximum speed of 62 km/h. The trip length
was 18.91 km. This information allows us to determine how much to pay the driver for
transporting the cargo, whether the contractual speed was exceeded, and other details.
Additionally, the trip length can be used in the future to calculate the number of
kilometers until the next maintenance of the trailer.

Detailed trip info

If you want a detailed track record of the trailer where the beacon is installed for
displaying it in a report, for example, you can use the track/read request. This will give
us data on all the points received by the platform during the journey.

Request example:

cURL

curl -X POST 'https://api.navixy.com/v2/track/read' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b", "tracker_id":
10181654, "from": "2023-04-17 17:00:00", "to": "2023-04-17
18:00:00", "filter": true}'

Response:

"success": true,
"limit_exceeded": true,
"list": [

{

"address": "10470, County Road, Town of Clarence, Erie

County, New York, United States, 14031",
"satellites": 10,
"mileage": O,
"heading": 173,
"speed": 42,
"get_time": "2023-04-17 17:05:42",
"alt": @,
"lat": 43.0318683,
"lng": -78.5985733

You can use these points together with your preferred maps API to display them on a
map.

Other examples of using BLE tags within Navixy API

Here are some other examples of how to use BLE tags with a short algorithm to get the
necessary results need:

Child seats

Child seats are mandatory for passengers traveling with children. If you or the user
operates a passenger transportation service, knowing whether a child seat is available
in a vehicle can help you quickly determine which drivers are suitable for certain
passengers and avoid wasting time and fuel. You can also find out which driver
currently has a child seat installed in their vehicle. Additionally, it's important to
consider passengers with two or more children and identify cars equipped with more
than one child seat.

To address this, you'll need to install a BLE beacon on each child seat. Next, let's say
your transport booking app needs to request information from all drivers who have a
child seat installed. To do this, use the beacon/last_values API call to gather
information about which drivers can be assigned to a particular order.

You can also use the RSSI parameter to determine if the seat is located inside the
vehicle or in the trunk. To accomplish this, you'll need to conduct a few tests. For
example, if the RSSI value is lower in the passenger compartment than in the trunk, the
seat is likely in the trunk. As a result, you can prioritize your search for vehicles — first,
those with a child seat in the passenger compartment, and then those with a child seat
in the trunk. This approach ensures that you efficiently match passengers with
appropriate vehicles and drivers.

Agricultural machinery

Suppose your client has agricultural machinery that can be connected to various
equipment. How can you track which tractor is using a seeder and which has a plow?
This information will help you understand the frequency and extent of tool usage, and
also determine their current location. This way, workers can spend more time working in
the field rather than searching for equipment. To achieve this, install devices on tractors
and combines, as well as in tool storage areas. Place one BLE beacon on each tool in a
secure spot where it is difficult to remove, preventing it from getting lost during work.
Next, to determine how long the tools have been in use, query the beacon/read API
call. The information from the response will be helpful, just like with the trailers in our
detailed example. To determine the location of a specific tool, query beacon/
last_values with a search for beacons to identify where and on which device the tool
is installed. This approach ensures efficient tracking and utilization of your agricultural
equipment, ultimately increasing productivity.

Use on construction sites

Construction sites often have numerous tools and expensive equipment. While
installing a beacon for tracking purposes is beneficial, another concern arises — how
can you ensure that the equipment is tracked frequently, and that the GPS tracker
doesn't run out of power? To monitor the usage and location of the equipment, BLE
beacons can also come in handy.

The solution for construction sites can be similar to that of agricultural machinery -
install devices on the machinery as well as on storage sites. This approach allows you
to effectively track your valuable equipment, ensuring that it's being used efficiently and
minimizing the risk of loss or misplacement. By keeping a close eye on your tools and
machinery, you can optimize productivity at the construction site.

Indoor tracking

You can effectively track items indoors using the platform and BLE tags. All you need to
do is install GPS devices in different parts of the warehouse or building and tag the
objects you want to track. Here are a few examples:

+ Tracking employees in various areas of a warehouse or store: This allows you to
know which area an employee is in or how many sales assistants are near the
information desk. Having this information helps improve efficiency and ensures that
staff members are where they need to be.

* Tracking goods or machinery in different areas of the warehouse: Knowing the
location of goods or equipment saves time, as you don't have to search for them
throughout the warehouse. This streamlines the retrieval process, making your
operations more efficient.

Tracking goods with BLE beacons

Utilizing BLE beacons for tracking can greatly benefit transport companies by allowing
them to determine which truck is carrying a specific pallet of goods at any given
moment. This method not only enables the tracking of goods' paths but also helps
calculate transport costs more accurately.

By adopting this innovative approach, transport companies can enhance their
operations, making them more efficient and precise. This ultimately leads to better
service for clients and more streamlined business processes.

Last update: August 8, 2023

Bill

Bill object description and API calls for work with user's bills.

Bill object

"order_id": 63602,
"created": "2012-03-05 11:55:03",

"sum": 150.0,
"status": "created",
"positions": ["The subscription fee for the services of

Account W3"],
"link": "http://bill.navixy.com/xKT1QEYK"
}
* order_id -int. Unique bill ID.
« created - date/time. When the bill created.
« sum - float. A bill sum in default currency of the panel.
* status - enum. Bill order status. Can be one of:
+ created - but not settled.
* settled.

* canceled.

* positions - string array. List of position names. Usually contains one element for a
bill.

+ link - string. URL to order.

APl actions

API path: /bill.

Create
Creates a new bill for the user.

required sub-user rights: payment_create.

parameters

name description type

payer Some payer description. string

sum A bill sum in default currency of the panel. double
example

cURL

curl -X POST 'https://api.navixy.com/v2/bill/create’ \

-H '"Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "payer": "Jon
Doe", "sum": 100.0}'

response

"success": true,
"value": 6421

« value -int. Created bill ID.

errors

+ 222 - Plugin not found - when plugin 29 not available for user.

list
Shows list of bills with their parameters in array.
required sub-user rights: payment_create .

parameters

description

limit Optional. A maximum number of bills in list. Maximum and default int
is 10 000.

offset Optional. Get bills starting from offset . Default 0. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/bill/list"' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/bill/1list?
hash=a6aa75587e5¢c59¢32d347da438505fc3

response
{
"success": true,
"count": 7,
"bills": [{

"order_id": 63602,

"created": "2012-03-65 11:55:03",

"sum": 150.0,

"status": "created",

"positions": ["The subscription fee for the services of
Account W3"],

"link": "http://bill.navixy.com/xKT1QEYK"

3

« count -int. Total number of bills.

* bills - array of objects. A list of bill objects.

If bill created using /bill/create call then positions will contain exactly one element.

. For Standalone version base part of link may be changed by billing.orders.baseUrl
config option.

errors

+ 222 - Plugin not found - when plugin 29 not available for user.

Last update: December 26, 2022

Payment system

Payment system settings object and API calls for working with payment systems and
make payments.

Payment system settings object

“type": "rbkmoney",

"url": "https:rbkmoney.com/acceptpurchase.aspx",

"account": "John Doe",

"currency": "EUR",

"payment_code": "Navixy Demo",

"subscription_code": "4671292",

"methods": ["method1", "method2"],

"prices": {
"Loccate_default_pay_1": 0.99,
"Loccate_default_pay_5": 4.99,
"Loccate_default_pay_10": 9.99,
"Loccate_default_pay_20": 19.99

* type - string. Payment system type.

« url - string. URL to send payment info.

* account - optional string. Dealer account in payment system (eshopld for RBK).
* currency - string. 3-letter ISO 4217 currency code.

* payment_code - optional string. Code for payments.

* subscription_code - string. Subscription code. The same as "payment_code" for
2Checkout (formerly Avangate) but for subscriptions.

+ methods - optional string array. List of available payment methods (it may be
empty).

* prices - optional object with prices. For type == ios_inapp only.

APl actions

API path: /payment_system.

list

Returns list of payment systems available for specified user.
required sub-user rights: payment_create .

examples

cURL

curl -X POST 'https://api.navixy.com/v2/payment_system/list'
-H 'Content-Type: application/json' \
-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b"}"’

HTTP GET

https://api.navixy.com/v2/payment_system/list?
hash=a6aa75587e5c59c32d347da438505fc3

response

"success": true,
“list": [
"type": "bill"
}]
« list - array of objects. List of payment system objects.

errors

+ 201 = Not found in the database.

estimate/get
Returns the estimate of the monthly payment amount

required sub-user rights: payment_create .

examples

cURL
curl -X POST 'https://api.navixy.com/v2/payment_system/estimate/
get' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"’
HTTP GET
https://api.navixy.com/v2/payment_system/estimate/get?

hash=a6aa75587e5¢c59¢32d347da438505fc3

response

"success": true,
"value": 400.0

+ value - float. Payment amount, rounded up to hundreds for rubles or to tens for
other currencies.

Last update: July 19, 2022

Subscription

API calls to interact with payment subscriptions

APl actions

API path: /subscription.

/subscription/avangate/

Working with 2Checkout (formerly Avangate) subscriptions (renewals).

cancel
Unsubscribe from auto-renewal by reference.
required sub-user rights: payment_create.

parameters

description

reference Internal 2Checkout (formerly Avangate) subscription code. string
Get it from list call.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/subscription/avangate/
cancel' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9dB@4da2celaf111b", "reference":
"5EAD4BOB2F" }'

HTTP GET
https://api.navixy.com/v2/subscription/avangate/cancel?

hash=a6aa75587e5¢c59¢32d347da438505fc3&reference=5EAD4BOB2F

response

https://www.2checkout.com
http://www.avangate.com

"success": true

errors

« 215 — External service error.

list

List active 2Checkout formerly Avangate subscriptions (renewals).
required sub-user rights: payment_create.

parameters

Only APl key hash.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/subscription/avangate/list’
\

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"

HTTP GET

https://api.navixy.com/v2/subscription/avangate/list?
hash=a6aa75587e5c59c32d347da438505fc3

response
{
"success": true,
"list": [{
"reference": "5EAD4BOB2F",

"code": "4679109",

"quantity": 123,

"expiration_date": "2021-01-28 13:32:11"
3

* reference - string. Internal 2Checkout (formerly Avangate) subscription code.
Pass it to /subscription/avangate/cancel.

 code - string. 2Checkout (formerly Avangate) product code.
* quantity -int. Count.

* expiration_date - date/time. Next renew date/time.

https://www.2checkout.com
http://www.avangate.com

errors

« 215 — External service error.

Last update: December 26, 2022

Transaction

Transaction object description and API call to get list of user's billing transactions for
the specified period.

Transaction object

{
"description”: "Recharge bonus balance during tracker
registration”,
"type": "bonus_charge",
"subtype": "register",
"timestamp": "2021-01-28 08:16:40",
"user_id": 12203,
"dealer_id": 5001,
"tracker_id": 303126,
"amount": -10.0000,
"new_balance": 800.0000,
"old_balance": 8160.0000,
"bonus_amount": 10.0000,
"new_bonus": 10.0000,
"old_bonus": ©0.0000
}

+ description - string. Transaction description.

* type - enum. Type of transaction.

+ subtype - enum. Subtype of transaction.

« timestamp - date/time. When transaction created.

« user_id -int. ID of a user which made a transaction.

* dealer_id -int. ID of a dealer.

* tracker_id -int. Tracker id. 0 if transaction not associated with tracker.

+ amount - double. Amount of money in transaction, can be negative. e.g. -10.0000
means 10 money units removed from user’'s balance.

* new_balance - double. User's money balance after transaction.
* old_balance - double. User's money balance before transaction.

* bonus_amount - double. Amount of bonus used in transaction, can be negative. e.g.
10.0000 means 10 bonuses units added to user's bonus balance.

* new_bonus - double. User's bonus balance after transaction.

« old_bonus - double. User's bonus balance before transaction.

APl actions

API path: /transaction.

list
Gets list of user's billing transactions for the specified period.
required sub-user rights: payment_create.

parameters

description

from Start date/time for searching. date/time

to End date/time for searching. Must be after from date. date/time

limit Optional. Maximum number of returned transactions. int
example

cURL

curl -X POST 'https://api.navixy.com/v2/transaction/list"' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "from":
"2021-01-20 08:16:40", "to": "2021-01-28 08:16:40"}"'

response
{
"success": true,
"list": [{
"description"”: "Recharge bonus balance during tracker
registration”,
"type": "bonus_charge",
"subtype": "register",

"timestamp": "2021-01-28 08:16:40",
"user_id": 12203,

"dealer_id": 5001,

"tracker_id": 303126,

"amount": -10.0000,

"new_balance": 800.0000,
"old_balance": 810.0000,
"bonus_amount": 10.0000,
"new_bonus": 10.0000,

"old_bonus": 0.0000
]

« list - array of objects. List of transactions objects.
errors

+ 211 — Requested time span is too big - more than report.maxTimeSpan.

Last update: December 26, 2022

../../commons/dealer/

Tariff

Tariff object description and API call to get the list of device's tariffs available to user.

Tariff object
{
"id": 10,
"name": "Business",

"group_id": 2,

"active": true,

"type": "monthly",

"price": 13.0,
"early_change_price": 23.0,
"device_limit": 1000,

"has_reports" : true,
"paas_free": false,
"store_period": "12m",
"features": [

"map_layers"

1,

"map_filter": {
"exclusion": true,
"values": []

id -int. Unique ID.
name - string. Tariff's label.

group_id -int. Group of tariffs. User can change the tariff only on the tariff in the
same group.

active - boolean. Tariff is active if true. User can change the tariff only on the
active tariff.

type - enum. Tariff type. Can be "monthly", "everyday", "activeday".

price - double. Price per month for "monthly" and "everyday" tariff or price per
"active" day for "activeday" tariff.

early_change_price - double. Price of change tariff from current to another. With
the last change in less than 30 days (tariff.freeze.period config option). When not
passed or "null" user cannot change tariff frequently.

device_limit -int. Maximum number of devices per account.

has_reports - boolean. true if reports allowed, false otherwise.

« paas_free - boolean. true if this tariff is free for PaaS owner, false otherwise.

+ store_period - string. Data storage period, e.g. "2h" (2 hours), "3d" (3 days), "5m"
(5 months), "1y" (one year).

« features - string array. Available features for the user.
« map_filter - object with available maps for the user.

* exclusion - boolean. If true maps from values will be not active, false -
maps from values will be active.

APl actions

APl path: /tariff.

list

Gets list of device's tariffs available to user.

If user's dealer is default dealer or paas then listed tariffs of that dealer, else listed
tariffs of parent dealer.

Listed only tariffs available for user's legal type.

parameters
Only API key hash.
examples

cURL

curl -X POST 'https://api.navixy.com/v2/tariff/list' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"’

HTTP GET

https://api.navixy.com/v2/tariff/list?
hash=a6aa75587e5c59c32d347da438505fc3

response
{
"success": true,
"list": [{
"id": 19,
"name": "Business",

“group_id": 2,
"active": true,
“type": "monthly",

“price": 13.0,
"early_change_price": 23.0,
"device_limit": 1000,

"has_reports" : true,
"paas_free": false,
"store_period": "12m",
"features": |

"“map_layers"”

] ’

"map_filter": {
"exclusion": true,
"values": []

}H

« list - array of objects. List of tariff objects.
errors

+ General types only.

Last update: December 26, 2022

Tariff tracker

API calls on user's actions with tracker tariffs.

User of dealer can switch tracker from the tariff t1 to tariff t2 if:

—_—

. Tracker belongs to user and isn't a clone.

2. Tracker's tariff last changed more than tariff.freeze.period (config option. default
30 days) ago.

3. t1.tariff_id |= t2.tariff_id, i.e. the new tariff must be different from the current.

4. t1.dealer_id = t2.dealer_id = dealer.effectiveDealerld, i.e. current and new tariffs
must belong to user's effective dealer.

5. t2.active = 1, i.e. new tariff is active (tariff's option "Allow users to switch to this
tariff independently” in panel is set on).

6. t1.grouping = t2.grouping, i.e. user can change tariff only within one group of
tariffs.

7. t2.device = tracker, i.e. new tariff must be for trackers.

(o]

. The new tariff is available to user's legal type.
User's effective dealer is

1. User's dealer if its dealer_id = defaultDealerld (config option) or dogovor_type =
'paas’.

2. Parent of user's dealer otherwise.

APl actions

API path: /tariff/tracker/.

change
Changes tariff of tracker (with tracker_id) to new tariff (with tariff_id).

required sub-user rights: admin (available only to master users).

name description type

tracker_id ID of the tracker (aka "object_id"). Tracker must belong to int
authorized user.

tariff_id If of the new tariff. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/tariff/tracker/change' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d04da2celaf111b", "tracker_id":
345215, "tariff_id": 12}°

HTTP GET

https://api.navixy.com/v2/tariff/tracker/change?

hash=a6aa75587e5c59¢c32d347da438505fc3&tracker_id=345215&tariff_id=12
response

{ "success": true }

errors
+ 201 — Not found in the database - if user doesn't have trackers with given
tracker_id.
+ 219 - Not allowed for clones of the device.

+ 237 - Invalid tariff - if there are no tariff with specified tariff_id and belongs to
user's effective dealer.

+ 221 - Device limit exceeded — when new tariff device limit is less than count of
trackers in account.

+ 238 - Changing tariff is not allowed - user can't switch tracker to that tariff.
+ 239 — New tariff doesn't exist.

+ 240 - Not allowed changing tariff too frequently — tariff last changed less or equal
to 30 days (tariff.freeze.period config option).

list

List tariffs on which user can switch the passed tracker (even when tariff last changed
less or equal than tariff.freeze.period time ago).

parameters

description

tracker_id ID of the tracker (aka "object_id"). Tracker must belong to int
authorized user.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/tariff/tracker/list’' \

-H '"Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "tracker_id"
345215}

HTTP GET

https://api.navixy.com/v2/tariff/tracker/list?
hash=a6aa75587e5c59¢c32d347da438505fc3&tracker_id=345215

response
{
"success": true,
"list": [{
"id": 1@,
"name" : "Business",

“group_id": 2,

"active": true,

“type": "monthly",

"“price": 13.0,
"early_change_price": 23.0,
"device_limit": 1000,

"has_reports" : true,
"paas_free": false,
"store_period": "12m",

"features": [
"map_layers"

Il

"map_filter": {
"exclusion": true,
"values": []
}

Pl

"days_to_next_change": 11

}

« list - array of objects. List of tariff objects.

+ days_to_next_change -int. Days to the next free change, or 0 if free change
available.

errors

+ General types only.

Last update: December 26, 2022

APl Keys

The API key is the main thing that is needed for the integration. This is the same as the
hash of the user's session gotten by the auth call, only with an infinite lifetime.

Unlike the user's session:

+ the API key will not be deleted if the user logs out or changes the password,
+ you do not need to renew the key periodically,

+ you do not transfer or store the username and password,

+ you can delete the key at any time if there is a suspicion of compromise,

* you can create a separate key for each individual integration.

« if request rate limit is exceeded, regular users will not be blocked, because API keys
have a separate counter.

. You can get an API key in user's web interface. This is the recommended way
instead of user session hash.

In one user's account, you can have up to 20 API keys intended for different external
integrations. To distinguish keys from each other, you should give them meaningful
names.

. Security

Do not publish API keys anywhere. Having a key, you can perform almost any action in
the user's account. Make API calls only over HTTPS because the key is transmitted in
cleartext.

Find more details on APl keys usage in our instructions.

API Key object

{
"hash": "c915157ac483e7319b0b257408bcB4e1",
"create_date": "2021-10-29 12:00:36",

../../../how-to/get-api-key/

"title": "Integration with My Super App"

* hash - string, 32 chars. Hash of an API key.
* create_date - date/time . Key creation date.

+ title - string. Key title.

Actions

APl path: /api/key.

create
Creates a new API key.

This call is available only to the master user and only with a standard session obtained
using a login/password via /user/auth.

parameters
name description type restrictions
hash Master user's String Not empty.

session hash.

title New key title String Not empty, only printable characters.
Max length: 255.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/api/key/create’ \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "title": "My
Super App"}'

HTTP GET

https://api.navixy.com/v2/api/key/create?
hash=a6aa75587e5¢c59c32d347da438505fc3&title=My+Super+App

response

"success": true,

"value": {
"hash": "c915157ac483e7319b0b257408bcO4e1",
"create_date": "2021-106-29 12:00:36",
"title": "My Super App"

errors

* 4 - User or API key not found or session ended. If the user session (hash param) is
invalid or a non-standard session is used (for example, another API key).

+ 13 - Operation not permitted. If a call with subuser's session hash.

+ 268 - Over quota. If 20 keys have already been created in the user's account.

delete
Deletes API key.

This call is available only to the master user and only with a standard session obtained
using a login/password via /user/auth.

parameters

name description type restrictions

hash Master user's session hash. String Not empty.

key The API key to delete. String Not empty.
examples

cURL

curl -X POST 'https://api.navixy.com/v2/api/key/delete’ \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "key"
"5063e191d734e87e17987953¢c7a9%9a086" }'

HTTP GET
https://api.navixy.com/v2/api/key/delete?

hash=a6aa75587e5c59c32d347da438505fc3&key=5063e191d734e87e17987953c7a9

response

"success": true

errors

* 4 - User or API key not found or session ended. If the user session (hash param) is
invalid or a non-standard session is used (for example, another API key).

+ 13 - Operation not permitted. If a call with subuser's session hash.

+ 201 - Not found in the database - if there is no specified API key in account.

list

Gets all of API keys for an account.

parameters
name description type restrictions
hash Master user's session hash. String Not empty.
examples
cURL

curl -X POST 'https://api.navixy.com/v2/api/key/list"' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/api/key/list?
hash=a6aa75587e5c59¢c32d347da438505fc3

response

"list": [{
"hash": "c915157ac483e7319b0b257408bc04e1",
"create_date": "2021-10-29 12:00:36",
"title": "My Super App"

b A
"hash": "e3b7d1d727d21e064a190239b3403ee3",
"create_date": "2021-11-19 16:06:03",
"title": "AmoCRM integration”

H,

"success": true

errors

4 - User or APl key not found or session ended. If the user session (hash param) is
invalid or a non-standard session is used (for example, another API key).

+ 13 - Operation not permitted. If a call with subuser's session hash.

Last update: February 8, 2024

Base

Contains API calls to health-check and send email.

APl actions

API path: /base.

nothing

The report for health-check. It will do nothing.
parameters

Only API key hash.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/base/nothing"' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"’

HTTP GET

https://api.navixy.com/v2/base/nothing?
hash=a6aa75587e5¢c59c32d347da438505fc3

response
{ "success": true }

errors

+ General types only.

send_email

Sends email from the platform to any email address with specified title and text. Needs
ROOT access level.

parameters

description

from From email address. string
to To email address. string
title Title of the email. string
message Text of the email. string
service_id Service parameter. int
service_pass Service parameter. int
example
cURL

curl -X POST 'https://api.navixy.com/v2/base/send_email' \

-H '"Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "from":
"gps@navixy.com", "to" : "customer@email.com", "title": "test
email”, "message": "this email for test", "service_id": 1,
"service_pass": 28}

response

{ "success": true }

errors

+ General types only.

Last update: December 26, 2022

Data

API call to parse the spreadsheet data.

/data/spreadsheet/parse

Parse spreadsheet file (.xlsx, .xls, .csv) and store it in internal storage.

parameters

description type
file File to upload. file
preview_count Size of preview. Min=1, max=20. int
parse_header Parse first row as header. boolean
header_map If parse_header is true should contains map of JSON

matching column name to field identifier, object

{"Label": "label", "Latitude": "lat"}.

If parse_header is setto true, first row of the uploaded file will be treated as header
corresponding to given header_map .

response
{
"file_id": "568539",
"header": ["header1", "header2"],
"preview": ["preview of file 1", "preview of file 2"]

« file_id - string. Unique file ID.
* header - optional string array. List of files' headers.

* preview - string array. First N rows of file.
errors

+ 234 - Invalid data format.

/data/import/list
Returns the list of the user's import processes.

parameters

name description

types Optional. Types of the imported entities, e.g. ["vehicle", string
"employee"] . array
response
{
"success" : true,
"list" : [{

"id": <int>,
"user_id": <int>,
"created": <date>,
“type": <string>, // vehicle | employee
"params": {
"headers": [<string>, <string>,...] // List of files' headers
b
"filename": <string>, // Name of preloaded TSV.
"status": <string>, // created | in_progress | done | failed
"status_change_date": <date>,
"progress": {
"imported": <int>,
"failed": <int>,
"percent"”: <int>, // approximate percentage of processed
"processed_lines": <int>,
"warnings": [{line:<int>, error: <string>}], // first 25
"errors": [{line:<int>, error: <string>}], // first 25

example

cURL

curl -X POST "https://api.navixy.com/v2/data/import/list" \
-H "Content-Type: application/json" \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3"}"

/data/import/read

Returns an import process with specified ID.

parameters

description

process_id Process ID int

type Type of the imported entities string
response

{

"success": true,
"value": {

"id": <int>,

"user_id": <int>,

"created": <date>,

“type": <string>, // vehicle | employee

"params”: {
"headers": [<string>, <string>,...] // List of files' headers

be

“filename": <string>, // Name of preloaded TSV.

"status": <string>, // created | in_progress | done | failed |

finished

"status_change_date": <date>,

"progress": {
"imported": <int>,
"failed": <int>,
"percent"”: <int>, // approximate percentage of processed
"processed_lines": <int>,
"warnings": [{line:<int>, error: <string>}], // first 25
"errors": [{line:<int>, error: <string>}], // first 25

example

cURL

curl -X POST "https://api.navixy.com/v2/data/import/read"” \
-H "Content-Type: application/json" \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "type":
"employee", "process_id": 1}'

errors

+ 201 - Not found in database (if import is not found)

Last update: October 6, 2023

Dealer

Contains API call to get dealer info and dealer-specific Ul settings.

APl actions

API path: /dealer.

get_ui_config
Gets dealer info and dealer-specific Ul settings by a domain or hash.

It doesn't require authentication and available in UNAUTHORIZED access level.

parameters
name description type
domain Dealer's monitoring interface domain, e.g. "panel.navixy.com". string
hash Used instead of a domain to identify a dealer if there is a user string

session

Params domain and hash is not required both, but one of them must be specified. If
hash is specified the domain shouldn't be used.

example

cURL

curl -X POST 'https://api.navixy.com/v2/dealer/get_ui_config' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d0@4da2celaf111b", "domain":
"panel.navixy.com"}'

response
{
"success": true,
"dealer": {
"id": 5001,

"ui_domain": "demo.navixy.com",

“company_url": "npavixy.com"
o
"settings": {
"domain" : "demo.navixy.com",
"service_title": "Navixy Demo",
"locale": "at_AT",
"demo_login": "demo",
"demo_password"”: "demo",
"maps": ["roadmap", "osm"],
"default_map": {
"type": "roadmap",
"location": {
"lat": 57.0,
"lng": 61.0
b
"zoom": 10
b
“currency": "EUR",
"payment_link": "http://site.de/pay.php",
“promo_url": "http://site.de/about/",
"google_client_id": "clientID",
“favicon": "paas/5001/custom.ico”,
"logo": "paas/5001/logo.png",
"app_logo": "paas/5001/app_logo.png",
"login_wallpaper": "paas/5001/login.png",
"desktop_wallpaper": "http://test.com/test.jpg",
"monitoring_logo": "http://test.com/test.jpg",
"login_footer": "All rights reserved.",
"allow_registration": true,
"show_mobile_apps" : true,
"show_call_notifications" : true,
"default_user_settings": {
"geocoder": "google",
"route_provider": "progorod",
"measurement_system": "metric",
"translit": false
P
"display_model_features_link" : true,
"color_theme": "aqua",
"app_color_theme": "blue_1",
"privacy_policy_link": "http://privacy-policy-url",
"tos": "Terms Of Service text",
"tracker_model_filter": {
"exclusion": true,
"values": []
fio
"internal": {
"light_registration": true,
"demo_tracker_source_id": 14,
"demo_tracker_label": "Demo tracker"
P
"no_register_commands": false
e
"demo_ends": "2014-61-01",
"premium_gis": true,
"features": ["branding_web"],
"platform": {

"iso_datetime_support": true,
"history.max_limit": 180,

"report.max_time_span": "P9@D",
"stats.max_allowed_trackers": 128,
"stats.max_time_span": "P31D",

"file_storage.hard_max_file_size": 16777216,
"form.max_fields_count": 128,
"form.file_field.max_file_size": 16777216,
"form.file_field.max_files_per_field": 6,
"form.file_field.max_count": 16

id -int. Dealer's ID.
ui_domain - string. Dealer's Ul domain.
company_url - string. Dealer's promo site URL.

settings - object. Custom settings. May be null if dealer has not set any custom
settings.

+ domain - string. The same as dealer.ui_domain.
« service_title - string. Title of the service.
« locale - enum. Default locale of the dealer.

* demo_login - string. Dealer's login for demo user or empty string if no demo
user available.

+ demo_password - string. Dealer's password for demo user or empty string if no
demo user available.

« maps - string array. List of available maps, e.g.

["roadmap", "cdcom", "osm", "wikimapia", "yandexpublic", "hybrid",

"satellite"].
« default_map - object. Default map settings.
* type - enum. Default map type.
+ location - object. Default map center location.
+ lat - float. Latitude.
« long - float. Longitude.
« zoom - int. Default map zoom level.
* currency -enum. Dealer's currency I1ISO 4217 code.

« payment_link - string. PaaS-dependent link that can be used to refill user's
account. Can be null or empty.

* promo_url - string. Customizable "About company" url.

* google_client_id - string. Client ID which must be used to work with Google
API or null.

« favicon - string. Path or URL to dealer's interface favicon.

+ logo - string. Path or URL to dealer's logotype.

« app_logo - string. Nullable, path or URL to dealer's mobile app logotype.

« login_wallpaper - string. Path or URL to dealer's interface login wallpaper.
+ desktop_wallpaper - string. Path to dealer's interface wallpaper or null.

* monitoring_logo - string. Path to dealer's interface monitoring logo or null.
+ login_footer - string. Footer which will be included in login page.

* allow_registration - boolean. If true then registration is available for
dealer's users. All HTML special chars escaped using HTML entities.

* show_mobile_apps - boolean. If true then mobile applications are available for
dealer's users.

« show_call_notifications - boolean. If true then call notifications are
available for dealer's users.

+ geocoder -enum. Default geocoder.
* route_provider - enum. Default router.
* measurement_system - enum. Measurement system.

* display_model_features_link - boolean. When true show in model info link
to squaregps.com (Ul option).

+ color_theme - enum. Color theme code or empty string (for default theme).

*+ app_color_theme - enum. Mobile app color theme code or empty string (for
default theme).

* tos - string. Terms of service text.

* tracker_model_filter - object. A filter which describes tracker models
available for registration.

« exclusion - boolean. If true models in the values will be excluded.
« values - string array. If it is empty - all models available.
* internal - object with additional options.

* light_registration - boolean. If true use "very simple" registration with
demo tracker.

« demo_tracker_source_id -int. An ID of tracker created on

light_registration.
« demo_tracker_label - string. Label of tracker created on light_registration.

* no_register_commands - boolean. If true then do not send commands to
devices on activation.

« demo_ends - string. A date when demo for this dealer ends. Is null when dealer is
not on Trial tariff.

* premium_gis - boolean. If true dealer has Premium GIS package.

- features - string array. Set of the allowed features for a dealer (all list see below in
"Dealer features").

« platform - key-value object. Global platform settings.

* iso_datetime_support - boolean, if true platform supports ISO 8601 date/
time format.

* history.max_limit -int, max limit for history list actions.

* report.max_time_span - 1SO08601 period, max timespan for reports generation.
* stats.max_allowed_trackers -int, max allowed trackers for stats actions.

* stats.max_time_span - 1SO8601 period,max timespan for stats actions.

« file_storage.hard_max_file_size -long, hard max file size in bytes for
uploading files to the file storage.

« form.max_fields_count - integer, max fields per form.
« form.file_field.max_file_size -long, max file size in bytes for the form file.
« form.file_field.max_files_per_field - integer, max files per form field.

« form.file_field.max_count -integer, max file fields per form.

Dealer features

name description

branding_web Allow to use custom logos, color theme, domain and favicon in Ul
for web version.

branding_mobile Allow to use custom icon, logo, color theme in the mobile
applications.

subpaas Allow to use Sub-Dealers (can be used only together with

navixy_label).

navixy_label Show "Powered by Navixy" in Ul (required for subpaas feature).

errors

+ 12 - Dealer not found (if corresponding dealer not found in the database).

../history/
../../tracking/tracker/stats/stats_mileage/
../../tracking/tracker/stats/stats_mileage/

- 201 - Not found in the database (if there is no Ui settings data for corresponding
dealer).

Last update: January 22, 2023

Feedback

Contains feedback object API call to send a feedback email, ask for help or suggest a
new feature.

Feedback object

{
"text": "My feedback",

"useragent": "Chrome/87.0.42860.88",

"platform”: "Windows NT 10.0; Win64; x64",
"screenshots": ["encoded imagel1", "encoded image2"],
"log": <log_file>

* text - string. Feedback text. May not be null.
* useragent - optional string. Information about the browser of user.
* platform - optional string. Information about the platform of user.

+ screenshots - optional string array. base64-encoded data:url image, example:
data:image/jpeg;baseb4, [encoded image] .

+ log - optional log file. Contains log of the browser.

APl actions

APl path: /feedback .

send_email

Sends an email with user's feedback, ask for help, or suggestion a new feature. The
message will be sent to dealer's email address for feedback.

parameters
name description type
feedback Message from the user. Screenshot and log will be added JSON

to email as attachments. object

description

type Optional. One of strings: support_request (default), enum

feature_request and review.

example

cURL

curl -X POST 'https://api.navixy.com/v2/feedback/send_email' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "feedback":
{"text": "I love this platform"}, "type": "review"}'

response

{ "success": true }

errors

+ General types only.

Last update: December 26, 2022

File

Contains an API call to get user's file statistic.

APl actions

API path: /file.

stats/read

Gets user's files statistic.
parameters

Only API key hash.
examples

cURL

curl -X POST 'https://api.navixy.com/v2/file/stats/read' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"’

HTTP GET
https://api.navixy.com/v2/file/stats/read?

hash=a6aa75587e5¢c59¢32d347da438505fc3

response

"success": true,

"value": {
"file_count": 24,
"total_size": 40192953,
"quota": 104857600

« file_count -int. Count of all uploaded files.
* total_size -int. Total files size in bytes.

* quota -int. Space available to the user in bytes.

errors

+ General types only.

Last update: July 19, 2022

Notification

Contains an API call to get list of user notifications.

APl actions

API path: /notification.

list

Lists user notifications.
parameters

Only API key hash.
examples

cURL

curl -X POST 'https://api.navixy.com/v2/notification/list"' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"’

HTTP GET

https://api.navixy.com/v2/notification/list?
hash=a6aa75587e5c59c32d347da438505fc3

response
{
"success": true,
"list": [{
"id": 12451529,
"message”: "notification",

"show_till": "2020-12-31 17:27:28"
3

* id -int. An ID of notification.
* message - string. Message of notification.

« show_till - date/time. Date until notification should be shown.

errors

+ General types only.

Last update: December 26, 2022

Timezone

Contains an API call to get information about all supported timezones.

APl actions

API path: /timezone .

list

Information about all supported timezones for the specified locale. Does not require
user authorization.

parameter

description type
locale Name of locale. enum
example
cURL

curl -X POST 'https://api.navixy.com/v2/timezone/list' \
-H 'Content-Type: application/json' \
-d '{"locale": "En-en"}'

response
{
"success": true,
"list": [{
"zone_id": "Australia/Sydney",
"description": "Sydney",

"base_offset": 10.0,
"dst_offset": 1,

“country_code": "AU",
"alt_ids": ["Australia/ACT", "Australia/Canberra",
"Australia/NSW"]

3

+ zone_id - string. Timezone ID, which is used throughout the API.

+ description - string. Localized description of the timezone.

* base_offset - double. Base timezone offset in hours, e.g. 10 means UTC +10. May
be negative or fractional!

+ dst_offset -int. DST offset in hours (0 if no DST rules for this timezone).
* country_code - string. ISO country code for the timezone.

« alt_ids - string array. List of strings, optional, alternative timezone IDs.
errors

+ General types only.

Last update: December 26, 2022

Entity actions

Contains entity object description and API calls to interact with it.

Entity describes a class of objects for which representation and editable fields can be
customized. For example, you can add your own custom fields of places entity or
rearrange existing fields.

Entity object

"id": 123,
"type": "place",
"settings": {
"layout": {
"sections": [{
"label": "Section label"”
"field_order": [
"label",
"location",
"131212",
"tags",
"description”
]
}]
}
}

* id - int. Entity identifier.
* type - enum. Currently, only "place" is supported.
+ layout - object describes layout of fields for entity.

* sections - array of objects. Each section can contain one or more fields. At least
one section must exist in a layout.

+ label - string. Name of section.

+ field_order - string array. Built-in fields and IDs of custom fields (as strings).
entity types:
place - a place object, the same as is available through place API.
Builtin fields:

* label.

../../field_service/place/

* location.
* tags.

« description.

APl actions

APl path: /entity.

list

Get list of entities which are available for customization.
parameters

Only APl key hash .

examples

cURL

curl -X POST 'https://api.navixy.com/v2/entity/list' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/entity/list?
hash=a6aa75587e5c59¢32d347da438505fc3

response
{
"success": true,
"list": [{
"id": 123,

“type": "place",
"settings": {
"layout": {
"sections": [{
"label": "Section label",
"field_order": [
"label",
"location",
"131212",
"tags",
"description”
]
}]

13

errors

+ General types only.

read
Gets entity by the ID or by type.

parameters

description

id ID of an entity. int

type Type of an entity. Entity type string, see above. string

. Exactly one of these parameters must be specified. They can't be both null or both
non-null.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/entity/read' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d64da2celaf111b", "id": 131312}"

HTTP GET

https://api.navixy.com/v2/entity/read?
hash=a6aa75587e5¢c59¢32d347da438505fc3&id=131312

response
{
"success": true,
"entity": {
"id": 123,

"type": "place",
"settings": {
"layout": {
"sections": [{
"label": "Section label",
"field_order": [

"label",

"location",
"131212",
"tags",
"description”
1
H
}
}
b
"fields": [{
"id": 131312,
"label": "Additional info",
"type": "text",
“required": true,
"description": "Info about place”
]

« fields - array of objects. Fields associated with this entity. Described in field
object.

errors

+ 201 - Not found in the database - if there is no entity with such ID.

update(entity)
Updates settings of customizable entity. Entity must have a valid ID.

required sub-user rights: places_custom_fields_update for entities with type place.

. entity.settings.layout.sections must contain IDs of all builtin and custom
fields which are associated with this entity. No fields can be omitted from layout,
only reordering allowed. Fields cannot be duplicated, even in different sections.

parameters

name description type

entity Entity object with valid ID and settings. JSON object

example

cURL

curl -X POST 'https://api.navixy.com/v2/entity/update' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d04da2celaf111b", "entity":
{"id": 123, "type": "place", "settings": {"layout": {"sections":
[{"label": "Section label", "field_order": ["label", "location",
"131212", "tags", "description"]}]}}}'

response
{
"success": true
}
errors

+ 201 - Not found in the database - if there is no entity with such ID.

+ 7 - Invalid parameters - if entity object violates restrictions described above.

Last update: December 26, 2022

Entity fields

Contains field object description and API calls to interact with it.

Field object

"id": 131312,

"label": "Additional info",
"type": "employee",

"required": false,
"description”: "Responsibility",
"params": {"responsible": true}

« id -int. Field identifier. Null for the new object.

* label - string. Name of the field.

+ type - enum. Type of field, see below.

* required - boolean. Whether field required to be filled or not.

« description - string. Additional info about the field, max 512 characters.

« params - object. Type-specific parameters. If no specific params, this field should
be omitted.

field types:
Without Special params:

+ text -text field up to 700 unicode symbols.

* bigtext - bigger text field, up to 20000 unicode symbols with reduced search and
sorting capabilities.

« email - field for storing email, validated to contain valid email address.
* phone - field for storing phone number, validated to contain valid phone number.

« decimal - decimal number from -999999999999.999999 to 999999999999.999999
. Values stored up to the sixth decimal place.

* integer -integer number from -263 to 2463 - 1.
With Special params:

+ employee - link to employee.

Special params:

{

"responsible”: true

}

responsible - boolean. Entities with this set to true can be shown to the employee in
the mobile app. Only one employee field can have this value setto true. If there's an
employee assigned to a Mobile Tracker App (Android / i0S), and a place has a custom
field of type "responsible employee”, such place will be available in the mobile app to
view. Thus, field employee can view all places assigned to him to visit them, etc.

Fields actions

APl path: /entity/fields.

Field allows adding custom information to a customizable entity. Each field belongs to
one entity.

read(entity_id)

Gets a set of custom fields associated with the specified entity. Note that you must
know entity ID, which can be obtained from entity/list.

parameters

description type
entity_id ID of an entity. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/entity/fields/read’' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "entity_id":
131312}

HTTP GET

https://api.navixy.com/v2/entity/fields/read?
hash=a6aa75587e5¢c59¢32d347da438505fc3&entity_id=131312

https://play.google.com/store/apps/details?id=com.navixy.xgps.tracker&hl=ru
https://apps.apple.com/us/app/x-gps-tracker/id802887190
../../../field_service/place/

response

"success": true,

"list": [
"id": 131312,
"label": "Additional info",
"type": "employee",
"required": false,
"description"”: "Responsibility",
"params”: {"responsible": true}

3

errors

+ 201 - Not found in the database - if there is no entity with such ID.

update(entity_id, fields, delete_missing)
Updates a set of custom fields associated with the specified entity.

required sub-user rights: places_custom_fields_update for fields associated with
place entity.

Fields passed with id equal to null will be created. If field already exists, its type
must be equal to type of already stored field (i.e. you can't change a type of field).

All fields associated with the same entity must have different label s.

Passing fields with id from non-existent fields or fields bound to another entity will
result in an error.

. If delete_missing is true, all existing fields which are missing from the fields
list will be permanently deleted! Otherwise, they are unaffected.

parameters
name description type
entity_id ID of an entity. int
fields List of new/existing fields to be created/updated. JSON

object

name description type

delete_missing Optional. Defaultis false. Delete fields not boolean
presentin fields list.

example

cURL

curl -X POST 'https://api.navixy.com/v2/entity/fields/update’ \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "entity_id":
131312, "fields": {"label": "Additional info", "type":
"employee”, "required": false, "description"”: "Responsibility",
"params": {"responsible": true}}’

response

A list of all fields associated with the specified entity. Newly created fields will have
their IDs filled.

"success": true,

"list": [
"id": 131312,
"label": "Additional info",
"type": "employee",
"required": false,
"description"”: "Responsibility",
"params": {"responsible": true}

3

errors

+ 201 - Not found in the database - if there is no entity with such ID.

« 7 - Invalid parameters - if fields violate restrictions described above.

Last update: December 26, 2022

Entity search Conditions

Contains search conditions object description and condition types.
Search conditions used to search and filter list of certain entities by built-in and/or
custom fields.

Search conditions object

{"type":"and",

"conditions":|
{"type":"or",
"conditions":|
{
“type": "eq",
"field":"18"
"value": 1111
b
{
"type": "contains",
"field":"27",
"value": "qqq"
}]
Yo
{
"type": "contains",
"field" :"label",
"value": "who"
1

Conditions represented by an array, each condition during search evaluated, and the
result is either true or false. Thus, boolean operations such as AND or OR can be
applied to them. All conditions in a top-level array joined using AND operator.

. A maximum of 72 conditions can be used at once, including nested conditions.

Condition types
"And" condition

Evaluates all specified conditions and joins them using AND boolean operator.

"type":"and",

"conditions" :[{
"type": "eq",
"field":"18",
"value": 1111

b

{
"type": "contains",
“field":"27",
"value": "qqq"

]

"Or" condition

Evaluates all specified conditions and joins them using OR boolean operator.

{
“type":"or",
"conditions" :[{
“type": "eq",
"field":"18",
"value": 1111
b
{
"type": "contains",
"field":"27",
"value": "qqq"
3
}

"Number equals" condition

Checks if specified field is equal to provided number value. Works for text fields too
(e.g. "111" is considered equal to 111). For linked entity fields, it matches linked entity
ID to number value.

{
“type": "eq",
“field":"18",
"value": 1111
}

« field - string. A built-in field or field id.

+ value -int. Number value to which field matched against. Can be decimal. Must be
between -2463 and 2463-1. No more than 6 fractions digits.

"Contains string" condition

Checks if specified field contains substring equal to provided value. Works for number
fields too, e.g. (123123 contains "123"). For linked entity fields, it matches value against
linked entity label or other similar field (first name, last name, etc.)

{
"type": "contains",
"field":"label",
"value": "who"

}

« field - string. A built-in field or field id.

+ value -int. string value to which field matched against. Cannot be null or empty,
max length is 760.

Last update: December 26, 2022

Events history

Contains history entry object description and API calls to interact with it.

Find instructions on getting notifications here.

Tracker history entry

{

"id": 1,

"type": "tracker",

"is_read": false,

"message"”: "Alarm",

“time": "2020-01-01 00:00:00",

"event": "offline",

"tracker_id": 2,

"rule_id": 3,

"track_id": 4,

"location" :{
"lat": 50.0,
"lng": 60.0,
"precision": 50

b

"address": "address",

"extra": {
"task_id": null
"parent_task_id": null,
"counter_id": null,
"service_task_id": null,
"checkin_id": null,
"place_ids": null,
"last_known_location": false,
"tracker_label": "Tracker label",
"emergency": false,
"employee_id": 4563

}

}

+ id - long. An ID of event.

+ type - enum. Type of device. Can be "socket", "tracker"”, or "camera".

« is_read - boolean. If true the notification seen by user and marked as read.
* message - string. Notification message.

+ time - date/time. When this notification received.

« event - enum. Type of history event extension. Available event types can be
obtained by /history/type/list action.

../../../how-to/how-to-work-with-notifications/

« tracker_id -int. An ID of the tracker (aka "object_id"). Tracker must belong to
authorized user and not be blocked.

* rule_id -int. An ID of assigned rule.
* track_id -int. An ID of a track on which the event happened.
+ location -location object. Location where the event happened.

+ address - string. Address of location or "" (empty string) if no address for
location.

+ extra - object. Extra fields for events. Like for what task or tracker the event was.
+ task_id -int. Related task identifier.

« parent_task_id - int. Related parent task identifier (for task checkpoint related
history entries).

« counter_id - int. Related counter identifier.

* service_task_id - int. Related service task ID.

* checkin_id - int. Related check-in marker.

* place_ids -int. Related place identifiers.

« last_known_location - boolean. true if location may be outdated.

* tracker_label - string. Tracker label.

* emergency - boolean. true for emergency events with the same flag in a rule.

* employee_id -int. Driver ID at the time of the event.

Date/time type described in data types description section.

APl actions

APl path: /history .

read
Returns history entry with the specified ID.

parameters

name description type

id History entry ID. long

description

add_tracker_label Optional. If true tracker label will be added to boolean
message.
examples
cURL

curl -X POST 'https://api.navixy.com/v2/history/read' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "id": 11231,
"add_tracker_label": true}'

HTTP GET

https://api.navixy.com/v2/history/read?
hash=a6aa75587e5c59¢c32d347da438505fc3&id=11231&add_tracker_label=true

response
{

"success": true,

"value": {
"id": 1,
"type": "tracker",
"is_read": false,
"message”: "Alarm",
"time": "2020-01-01 00:00:00",
"event": "offline",
"tracker_id": 2,
"rule_id": 3,

"track_id": 4,
"location":{

"lat": 50.0,
"lng": 60.0,
"precision": 50

b

"address": "address",

"extra": {
"task_id": null ,
"parent_task_id": null,
"counter_id": null,
"service_task_id": null,
"checkin_id": null,
"place_ids": null,
"last_known_location": false,
"tracker_label": "Tracker label",
"emergency": false,
"employee_id": 4563

}

errors

+ 201 - Not found in the database - when there are no history entries with that ID.

mark_read

Marks history entry as read by id (see: Tracker history entry).

parameters
name description type
id Tracker history entry ID long
examples
cURL

curl -X POST 'https://api.navixy.com/v2/history/mark_read' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "id": 11231}

HTTP GET

https://api.navixy.com/v2/history/mark_read?
hash=a6aa75587e5¢c59¢32d347da4385065fc3&id=11231

response
{ "success": true }

errors

+ 201 - Not found in the database - when there are no history entries with that ID.

mark_read_all
Marks all the user's history entries read.
parameters

Only APl key hash .

examples

cURL

curl -X POST 'https://api.navixy.com/v2/history/mark_read_all' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"’

HTTP GET

https://api.navixy.com/v2/history/mark_read_all?
hash=a6aa75587e5¢c59¢32d347da438505fc3

response

{ "success": true }

errors

+ General types only.

Last update: January 9, 2024

Tracker events

Contains list method to get tracker's events.

APl actions

API path: /history/tracker/ .

list

List less than or equal to 1imit of tracker events filtered by event types (events)

between from date/time and to date/time sorted by time field.

Described this API call usage details in our how-tos.

parameters

name description

trackers List of tracker's IDs.

from Start date/time for searching.

to End date/time for searching. Must be after "from"
date.

events Optional. Default: all. List of history types.

limit Optional. Default: history.maxLimit. Max count of
entries in result.

ascending Optional. Default: true. Sort ascending by time

when itis true and descending when false.

If events (eventtypes) not passed then list all event types.

Available event types can be obtained by /history/type/list action.

type

int array

string date/
time

string date/
time

string array

int

boolean

../../dealer/

Default and max limit is 1000. (Note for StandAlone: this value configured by
maxHistoryLimit config option).

example

cURL

curl -X POST 'https://api.navixy.com/v2/history/tracker/list"' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d064da2celaf111b", "trackers":
[131312, 123985], "from": "2020-12-10 16:44:80", "to": "2020-12-22
16:44:00" }'

response
{

"success": true,

"list": [
"id": 1,
"type": "tracker",
"is_read": false,
"message"”: "Alarm",
"time": "2020-01-01 00:00:00",
"event": "offline",
"tracker_id": 2,
"rule_id": 3,

"track_id": 4,
"location":{

"lat": 50.0,
"lng": 60.0,
"precision": 50

Ve

"address": "address",

"extra": {
"task_id": null ,
"parent_task_id": null,
"counter_id": null,
"service_task_id": null,
"checkin_id": null,
"place_ids": null,
"last_known_location": false,
"tracker_label": "Tracker label"
"emergency": false,
"employee_id": 4563

}

H,

"limit_exceeded": false

« list - list of zero or more history_entry” objects which described in Tracker history
entry.

+ limit_exceeded - boolean. false when listed all history entries satisfied with
conditions and true otherwise.

errors
+ 211 — Requested time span is too big - time span between from and to is more
than report.maxTimeSpan days.
+ 212 — Requested 1imit istoo big- 1imit is more than history.maxLimit.

« 217 — List contains nonexistent entities — if one of the specified trackers does not
exist or is blocked.

Last update: August 1, 2023

../../dealer/
../../dealer/

Event type

Contains list method to get event types available to user with localized descriptions.

APl actions

API path: /history/type.

list

Returns available history event types with localized descriptions.

parameters
name description
locale Locale code to set language of descriptions.
only_tracker_events Optional. Defaultis true . Will return only
tracker type events if true.
example
cURL

curl -X POST 'https://api.navixy.com/v2/history/type/list' \
-H 'Content-Type: application/json' \

en"}
response
{
"success": true,
"list": [{
"type": "alarmcontrol",
"description”: "Car alarm"
}

* type - string. History event type.

« description - string. Localized description.

-d '"{"hash": "22eac1c27af4be7b9d0@4da2celaf111b", "locale":

type

enum

boolean

"En-

errors

+ General types only.

Last update: December 26, 2022

Unread events

Contains API calls to interact with unread history events.

APl actions

API path: /history/unread.

list

List less than or equal to 1imit of the latest user's unread history events. Described
how it works in our instructions.

parameters

description

limit Optional. Limit of entries in response. int
from Optional. Start date/time for searching. Default from is now date/
minus one year. time

Default and max limit is history.maxLimit.
examples

cURL

curl -X POST 'https://api.navixy.com/v2/history/unread/list"' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"'

HTTP GET
https://api.navixy.com/v2/history/unread/list?

hash=a6aa75587e5¢c59¢32d347da438505fc3

response

"success": true,
"list": [
"id": 1,

../../dealer/

"type": "tracker",

"is_read": false,

"message”: "Alarm",

"time": "2020-01-01 00:00:00",
"event": "offline",
"tracker_id": 2,

"rule_id": 3,

"track_id": 4,

"location":{

"lat": 50.0,
"lng": 60.0,
"precision": 50

b

"address": "address",

"extra": {
"task_id": null ,
"parent_task_id": null,
"counter_id": null,
"service_task_id": null,
"checkin_id": null,
"place_ids": null,
"last_known_location": false,
"tracker_label": "Tracker label",
"emergency": false,
"employee_id": 4563

}

3

+ list - array of objects. list of zero or more Tracker history entry objects.
errors

+ 212 - Requested limit is too big (more history.maxLimit config option).

count
Get count of user's unread history messages starting from date.

parameters

description

from Optional. Start date/time for searching. Default from is now date/
minus one year. time
type Optional. Type of devices that should be count. Can be enum

"socket", "tracker”, or "camera".

../../dealer/

examples

cURL

curl -X POST 'https://api.navixy.com/v2/history/unread/count’ \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"’

HTTP GET

https://api.navixy.com/v2/history/unread/count?
hash=a6aa75587e5¢c59¢32d347da438505fc3

response
{
"success": true,
"count": 1
}
errors

+ General types only.

Last update: August 1, 2023

User events

Contains list method to get user's events.

APl actions

API path: /history/user/.

list

List less than or equal to 1imit of tracker events filtered by event types (events)
between from date/time and to date/time sorted by time field.

Added more information about this API call usage in our instructions.

parameters
name description type
from Start date/time for searching. string date/
time

to End date/time for searching. Must be after "from" string date/
date. time

events Optional. Default: all. List of history types. string array

limit Optional. Default: history.maxLimit. Max count of int
entries in result.

ascending Optional. Default: true. Sort ascending by time boolean

when itis true and descending when false.

If events (event types) not passed then list all event types.
Available event types can be obtained by /history/user/list action.

Default and max limit is 1000. (Note for StandAlone: this value configured by
maxHistoryLimit config option).

../../dealer/

example

cURL

curl -X POST 'https://api.navixy.com/v2/history/user/list' \
-H 'Content-Type: application/json' \
-d "{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "from":
"2020-12-10 16:44:00", "to": "2020-12-22 16:44:00"}

response
{

"success": true,

"list": [{
"id": 1,
"type": "tracker",
"is_read": false,
"message"”: "Alarm",
"time": "2020-01-01 00:00:00",
"event": "offline",
"tracker_id": 2,
"rule_id": 3,

"track_id": 4,
"location":{

"lat": 50.0,
"lng": 60.0,
"precision": 50

b

"address": "address",

"extra": {
"task_id": null ,
"parent_task_id": null,
"counter_id": null,
"service_task_id": null,
"checkin_id": null,
"place_ids": null,
"last_known_location": false,
"tracker_label": "Tracker label"
"emergency": false,
"employee_id": 4563

}

H,

"limit_exceeded": false

« list - list of zero or more history_entry’ objects which described in Tracker history
entry.

+ limit_exceeded - boolean. It indicates if the response has exceeded the
store_period limit, set in the user's tariff plan. Will be true if you request a
period that exceeds what the user's plan allows.

errors

+ 211 — Requested time span is too big - time span between from and to is more
than report.maxTimeSpan days.

+ 212 — Requested 1imit istoo big- 1imit is more than history.maxLimit.

Last update: November 22, 2023

../../dealer/
../../dealer/

Plugin

Contains plugin object description and API calls to interact with it.
Plugins are special software modules which modify the behavior of various API calls.

Plugin object structure

{
"id": 1,
"type" :"tracker_register",
"ui_module": "Registration.appPlugins.BundledSim",
"module”: "com.navixy.plugin.tracker.register.bundled_sim",
"filter": {
"exclusion": true,
"values": ["navixymobile", "mobile_unknown.*"]
be
"parameters" : {<parameteri>}

« id -int. An ID of plugin.

* type - string. Plugin type.

* ui_module - string. Plugin Ul module name.
* module - string. Plugin module name.

« filter - object. A model filter which describes to which device models this plugin

is applicable.

* exclusion -boolean. If true, "models" lists models NOT supported by this
plugin, if false, "models" contains all supported models.

+ values - string array. List of the regexes for models which are (not) supported
by this plugin.

+ parameters - plugin-specific parameters as JSON object. This field omitted if it's
null (anditis null most of the time).

object example

{
"id": 4,
"type": "tracker_report",
"module”: "com.navixy.plugin.tracker.report.trip"”,
"ui_module": "Trip",
"filter": {

"exclusion": true,
"values": []

APl actions

API path: /plugin.

list

Get all plugins available to the user. List of available plugins may vary from user to user
depending on platform settings and purchased features. Only these plugins can be used
to register trackers, generate reports, etc.

parameters
Only APl key hash.
examples

cURL

curl -X POST 'https://api.navixy.com/v2/plugin/list' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b"}’

HTTP GET

https://api.navixy.com/v2/plugin/list?
hash=a6aa75587e5¢c59¢32d347da438505fc3

response
{
"success": true,
"list": [
"id": 4,
"type": "tracker_report",
"module”: "com.navixy.plugin.tracker.report.trip",
"ui_module": "Trip",
"filter": {
"exclusion": true,
"values": []
}
}]

« list - array of objects. List of available plugins.

errors
+ General types only.
Standalone-specific:

If no plugins enabled for user and his dealer then available plugins enabled by default
(config options plugin.tracker.register.defaultlds and plugin.tracker.report.defaultids).

Last update: December 26, 2022

Report plugins

Contains report plugins with plugin-specific parameters.

Trips report

A report on detailed trip history.
parameters

Default plugin_id: 4.

Plugin-specific parameters:
name
hide_empty_tabs

show_seconds

include_summary_sheet_only

include_summary_sheet

split

show_idle_duration

show_coordinates

filter

description

If true, empty tabs will be hidden.

If true,timestamps will be with
seconds.

If true, report will contain only a
summary sheet for all chosen devices.

If true,report will contain a summary
sheet. Default is true.

Trips will be split by stops if true.

Will show idle duration in report if

true.

Every address will contain longitude
and latitude if true.

If true,short trips will hide (shorter
than 300m/have less than 4 points
total and if the device circles around
one point (e.g., star pattern from GPS
drifting)).

type

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

name

group_by_driver

plugin example

description

Group trips by driver assigned to the
device if true.

{
"hide_empty_tabs": true,
"plugin_id": 4,
"show_seconds": false,
"include_summary_sheet_only": false,
"include_summary_sheet": true,
"split": true,
"show_idle_duration": false,
"show_coordinates": false,
"filter": true,
"group_by_driver": false

}

Stops report

A report on detailed stops history.

parameters

Default plugin_id: 6.

Plugin-specific parameters:

name

hide_empty_tabs

show_seconds

show_coordinates

filter

description

If true, empty tabs will be hidden.

If true,timestamps will be with seconds.

Every address will contain longitude and latitude if

true.

If true, short trips will be part of stops (shorter

than 300m/have less than 4 points total and if the

device circles around one point (e.g., star pattern
from GPS drifting)).

type

boolean

type

boolean

boolean

boolean

boolean

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 6,
"show_seconds": false,
"show_coordinates": false,
"filter": false

}

Trips and stops by shifts report
A report on trips and stops by shifts.
parameters

Default plugin_id: 77.

Plugin-specific parameters:

description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true,timestamps will be with seconds. boolean
shifts List of shifts with names, start and end time. e.g. array of

[{"name" :"Shift1", "start_time":"00:00", objects

"end_time" :"23:59"}]

filter If true,short trips will not coincide (shorter than boolean
300m/have less than 4 points total and if the
device circles around one point (e.g., star pattern
from GPS drifting)).

show_coordinates Every address will contain longitude and latitude boolean
if true.

split_at_midnight Split shifts at midnight if true. boolean

* shifts is:

{

"shifts": [{

"name" : "Shift1"

"start_time": "00:00",

"end_time": "23:

13

plugin example

50

{
"hide_empty_tabs": true,
"plugin_id": 77,
"show_seconds": false,
"shifts": [{
"name" : "Shift1",
"start_time": "00:00",
"end_time": "12:00"
o A
"name" : "Shift2",
"start_time": "12:00",
"end_time": "23:59"
L
"filter": true,
"show_coordinates": false,
"split_at_midnight": true
}

Geofence visits report

A report on date, time, and mileage in geofence.

parameters
Default plugin_id: 8.

Plugin-specific parameters:

description

hide_empty_tabs

show_seconds

show_mileage

show_not_visited_zones

If true, empty tabs will be hidden.

If true,timestamps will be with
seconds.

Adds mileage to the report if true.

Will show non visited zones if true.

boolean

boolean

boolean

boolean

description

min_minutes_in_zone Minimum minutes in a zone to start
determining visit. If the device was in a
zone less than a specified time - the
visit not count.

zone_ids List of zone IDs.
hide_charts If true, charts will be hidden.
include_summary_sheet_only If true,report will contain only a

summary sheet.

include_summary_sheet If true, report will contain a summary
sheet. Default is true.

plugin example

"hide_empty_tabs": true,
"plugin_id": 8,

"show_seconds": false,
"include_summary_sheet_only": false,
"include_summary_sheet": false,
"show_mileage": false,
"show_not_visited_zones": false,
"min_minutes_in_zone": 5,
"hide_charts": false,

"zone_ids": [2143181, 2143182]

POI visits report

A report on date, time, and the number of POls visits.
parameters

Default plugin_id: 85.

Plugin-specific parameters:

int

int
array

boolean

boolean

boolean

description

hide_empty_tabs If true, empty tabs will be hidden. boolean

show_seconds If true,timestamps will be with boolean
seconds.

show_mileage Adds mileage to the report if true. boolean

show_not_visited_places Will show non visited POIs if true. boolean

min_minutes_in_place Minimum minutes in a place to start int

determining visit. If the device was in a
place less than a specified time - the
visit not count.

place_ids List of place IDs. int
array

hide_charts If true, charts will be hidden. boolean

include_summary_sheet_only If true, report will have only a boolean

summary sheet.

include_summary_sheet If true, report will contain a summary boolean
sheet. Default is true.

fetch_places_by_employees If true, places will show assigned boolean
employee. Place should be assigned to
an employee to show his name.

plugin example

"hide_empty_tabs": true,
"plugin_id": 85,

"show_seconds": false,
"include_summary_sheet_only": false,
"show_mileage": false,
"show_not_visited_places": false,
"min_minutes_in_place": 5,
"hide_charts": false,
"fetch_places_by_employees": false,

"place_ids": [1612957, 1886863, 1886864]
}

Car security report
A report on alarms, towing alerts, AutoControl events, and crashes.
parameters

Default plugin_id: 15.

Plugin-specific parameters:

description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 15,
"show_seconds": false

}

Emergency button (SOS) report
A report on SOS button events log
parameters

Default plugin_id: 16.

Plugin-specific parameters:
name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean

show_seconds If true,timestamps will be with seconds. boolean

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 16,
"show_seconds": false

}

Fall detection report

A report on fall detection sensor log.
parameters

Default plugin_id: 17.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true,timestamps will be with seconds. boolean

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 17,
"show_seconds": false

}

Tracker detach report

A report on demounting devices from tracking objects.
parameters

Default plugin_id: 18.

Plugin-specific parameters:

name description type

hide_empty_tabs If true, empty tabs will be hidden. boolean

show_seconds If true,timestamps will be with seconds. boolean

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 18,
"show_seconds": false

}

Overall security report
A report on all events related to security and safety.
parameters

default plugin_id: 19.

Plugin-specific parameters:

description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true,timestamps will be with seconds. boolean
group_by_type If true,events will group by type. boolean

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 19,
"show_seconds": false,
"group_by_type": false

}

Engine hours report

A report on time spent in motion and on idling.
parameters

default plugin_id: 7.

Plugin-specific parameters:

name description

hide_empty_tabs If true, empty tabs will be hidden.

show_seconds If true,timestamps will be with
seconds.

show_detailed If true,report will contain detailed

engine hours tab.

include_summary_sheet_only If true,report will contain only a

summary sheet for all chosen devices.

include_summary_sheet If true,report will contain a summary

sheet. Defaultis true.

filter If true, short trips will not coincide
(shorter than 300m/have less than 4
points total and if the device circles
around one point (e.g., star pattern
from GPS drifting)).

plugin example

"hide_empty_tabs": true,
"plugin_id": 7,
"show_seconds": false,
"show_detailed": false,
"include_summary_sheet_only
"filter": true

. false,

type

boolean

boolean

boolean

boolean

boolean

boolean

Fuel volume report

A report on fuel refills, drains, consumption (based on fuel level sensor).
parameters

default plugin_id: 10.

Plugin-specific parameters:

name description type

show_seconds If true,timestamps will be with boolean
seconds.

graph_type The type of X-axis. Can be "time" enum
or "mileage".

detailed_by_dates If true, show final data on fuel boolean

traffic for each day in the period.

include_summary_sheet_only If true, report will contain only boolean
a summary sheet for all chosen
devices.

include_summary_sheet If true,report will contain a boolean

summary sheet. Default is true.

use_ignition_data_for_consumption Calculate consumption only boolean
when the ignition was on if

true.

include_mileage_plot Optional. Used if graph_type = boolean
time . Show mileage plot if

true.

filter If true, short trips will not boolean
coincide (shorter than 300m/
have less than 4 points total and
if the device circles around one
point (e.g., star pattern from GPS
drifting)).

name description

include_speed_plot If true, show speed plot.

smoothing Smooth graph if true.

Smoothing reduces the accuracy

of calculating refills or drains.

surge_filter If true, enables surge filter.

surge_filter_threshold Defines a level of surge filter.
Can be 0.01 - 0.99.

speed_filter If true, enables speed filter.

speed_filter_threshold Defines a speed filter threshold.

plugin example

"show_seconds": false,

"plugin_id": 10,

"graph_type": "mileage",
"detailed_by_dates": true,
"include_summary_sheet_only": false,
"use_ignition_data_for_consumption”: false,
"include_mileage_plot": false,
"filter": true,
"include_speed_plot": false,
"smoothing": false,

"surge_filter": true,
"surge_filter_threshold": 0.2,
"speed_filter": false,
"speed_filter_threshold": 10

Flow meter report

A report on fuel consumption counted by flow meter sensors.
parameters

default plugin_id: 78.

Plugin-specific parameters:

type

boolean

boolean

boolean

float

boolean

int

name description type

detailed_by_dates If true, atable with statistics for every boolean
single day in selected date range will
be added to the report.

filter If true, short trips will not coincide boolean
(shorter than 300m/have less than 4
points total and if the device circles
around one point (e.g., star pattern
from GPS drifting)).

include_summary_sheet_only If true, report will contain only a boolean
summary sheet for all chosen devices.

include_summary_sheet If true,report will contain a summary boolean
sheet. Default is true.

plugin example

{
"detailed_by_dates": true,
"plugin_id": 78,
"include_summary_sheet_only": false,
"filter": true

}

Vehicle sensors report

A report on CAN-bus and OBD2-port data.
parameters

default plugin_id: 22.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean

details_interval_seconds int

description

The interval in seconds. From 30 to
21600.

details_interval_minutes Deprecated! The interval in minutes. int
Canbe [5, 30, 60, 180, 360].

graph_type The type of X-axis. Can be "time" or enum
"mileage”.

smoothing Smooth data if true. boolean

Sensors List of objects containing tracker_id and array of
sensor_id. objects

* sensors is:

{

"sensors": [{
"tracker_id": 37714,
"sensor_id": 57968

+

}

. Parameter details_interval_minutes is deprecated. Please use

details_interval_seconds.

plugin example

"hide_empty_tabs": true,
"plugin_id": 22,
"details_interval_seconds": 60,
"graph_type": "time",
"smoothing": false,
"sensors": [{
"tracker_id": 993495,
"sensor_id": 1378566

}H

Speed violation

A report on speeding instances.
parameters

default plugin_id: 27.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true,timestamps will be with seconds. boolean
min_duration_minutes A minimum time in seconds when speed is int

more than max_speed to determine violation.

max_speed A maximum speed to determine violation. int

group_by_driver Group violations by driver assigned to the boolean
device if true.

filter If true,short trips will not coincide (shorter boolean
than 300m/have less than 4 points total and if
the device circles around one point (e.g., star
pattern from GPS drifting)).

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 27,
"show_seconds": false,
"min_duration_minutes": 5,
"max_speed": 60,
"group_by_driver": false,
"filter": true

}

Device switching ON/OFF report

A report on switching device using hardware switch.

parameters

default plugin_id: 23.

Plugin-specific parameters:

description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true,timestamps will be with seconds. boolean

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 23,
"show_seconds": false

}

GSM connection lost

A report on long disruptions of server connection
parameters

default plugin_id: 13.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true,timestamps will be with seconds. boolean

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 13,
"show_seconds": false

Measuring sensors report

A report on detailed sensor reading history.
parameters

default plugin_id: 9.

Plugin-specific parameters:

name description type

hide_empty_tabs If true, empty tabs will be hidden. boolean

details_interval_seconds The interval in seconds. From 30 to int
21600.

details_interval_minutes Deprecated! The interval in minutes. Can int

be [5, 30, 60, 180, 360].

graph_type The type of X-axis. Can be "time" or enum
"mileage”.

smoothing Smooth data if true. boolean

show_address Address of each reading appears in report boolean
if true.

filter If true,short trips will not coincide boolean

(shorter than 300m/have less than 4
points total and if the device circles
around one point (e.g., star pattern from
GPS drifting)).

sensors List of objects containing tracker_id and array of
sensor_id. objects

* sensors is:

{

"sensors": [{
"tracker_id": 37714,
"sensor_id": 57968

}H

. Param details_interval_minutes is deprecated. Please sue

details_interval_seconds.

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 9,
"details_interval_seconds":
"graph_type": "time",
"smoothing": false,
"show_address": false,
"filter": true,
"sensors": [{
"tracker_id": 993495,
"sensor_id": 1378566
H
}

Equipment working time

60,

A report on activity and idle time of the equipment.

parameters

default plugin_id: 12.

description

type

hide_empty_tabs

show_seconds

min_working_period_duration

show_idle_percent

filter

If true, empty tabs will be hidden.

If true,timestamps will be with
seconds.

A minimum time in seconds the
equipment works to determine
activity. Min = 1.

If true,show percentage of idling.

boolean

boolean

int

boolean

boolean

name

sensors

* sensors is:

{

"sensors": [{
"tracker_id":
"sensor_id":

+

}

plugin example

"hide_empty_tabs":

"plugin_id": 12,
"show_seconds" :

description

If true,shorttrips will not coincide

(shorter than 300m/have less than 4
points total and if the device circles

around one point (e.g., star pattern
from GPS drifting)).

List of objects containing tracker_id

and sensor_id.

"min_working_period_duration": 60,

"show_idle_percent": false,

"filter": false,
"sensors": [{

"tracker_id":

"sensor_id":

}H

Tasks report

A report on tasks statuses.

parameters

default plugin_id: 42.

type

array of
objects

name description

hide_empty_tabs If true, empty tabs will be hidden.
show_seconds If true,timestamps will be with seconds.
show_external_id Show external ID of task, if true.
show_description Show description of task, if true.
show_forms Show forms when the task has it, if true.
show_places_and_zones Show places and geofences, if true.

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 42,
"show_seconds": false,
"show_external_id": false,
"show_description": false,
"show_forms": true,
"show_places_and_zones": false

}

Form completion statistics report
A report on form fields completion rate.
parameters

default plugin_id: 70.

name description
hide_empty_tabs If true, empty tabs will be hidden.
show_nonselected If true, not selected options in forms will be

shown.

type

boolean

boolean

boolean

boolean

boolean

boolean

type

boolean

boolean

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 70,
"show_nonselected": true
}

Work statuses report
A report on status changes history.
parameters

default plugin_id: 47.

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true,timestamps will be with seconds. boolean

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 47,
"show_seconds": false

}

Check-in report

A report on markers for Check-in function. Available only for X-GPS Trackers.
parameters

default plugin_id: 80

Plugin-specific parameters:

name description type

show_coordinates If true, coordinates will be added to the boolean
report.

hide_empty_tabs If true, empty tabs will be hidden. boolean

show_coordinates Every address will contain longitude and boolean

latitude, if true.

show_places_and_zones Show places and geofences, if true.

show_forms Show forms when the task has it, if true. boolean

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 89,
"show_coordinates": false,
"show_places_and_zones": false,
"show_forms": true

}

Driver shift change report

A report on driver identification.
parameters

default plugin_id: 66.

Plugin-specific parameters:

name description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true,timestamps will be with seconds. boolean

plugin example

"hide_empty_tabs": true,
"plugin_id": 66,
"show_seconds": false

Trips by state

A report on trips breakdown by jurisdictions.
parameters

default plugin_id: 73.

Plugin-specific parameters:

name description type

hide_empty_tabs If true, empty tabs will be hidden. boolean

show_seconds If true,timestamps will be with boolean
seconds.

filter If true, short trips will not coincide boolean

(shorter than 300m/have less than 4
points total and if the device circles
around one point (e.g., star pattern
from GPS drifting)).

include_summary_sheet_only If true,report will contain only a boolean
summary sheet for all chosen devices.

include_summary_sheet If true,the report will contain a boolean
summary sheet. Default is true.

group_type A group type. Can be "province" or enum
“country”.

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 73,

"show_seconds": false,

"filter": false,
"include_summary_sheet_only": false,
"group_type": "province"

Report on all events

An overall report about any kind of events.
parameters

default plugin_id: 11.

Plugin-specific parameters:

description

hide_empty_tabs If true, empty tabs will be hidden.
show_seconds If true,timestamps will be with seconds.
group_by_type Groups events by type if true.

event_types A list of event types that will be considered.

* the object with all event_types is:

"event_types": [
"auto_geofence_in",
"auto_geofence_out",
"door_alarm",
"forward_collision_warning"”,
"gps_lost",
"gps_recover",
"gsm_damp",
"harsh_driving",
"headway_warning",
"hood_alarm",
"idle_end",
"idle_start",
"ignition",
"inroute",
"outroute",
"lane_departure",
"obd_plug_in",

boolean

boolean

boolean

string array

"“obd_unplug",
"peds_collision_warning",
"peds_in_danger_zone",
"odometer_set",
"online",
"output_change",
"security_control",
"tracker_rename",
"track_end",
"track_start",
"“tsr_warning",
"sensor_inrange",
"sensor_outrange",
"work_status_change",
"call_button_pressed”,
"driver_changed",
"driver_identified",
"driver_not_identified",
"fueling",

"drain",
"checkin_creation",
"tacho",
"antenna_disconnect",
"check_engine_light",
"location_response"”,
"backup_battery_low",
"fatigue_driving",
"inzone",

"outzone",

"speedup”,
"alarmcontrol"”,
"battery_off",
"bracelet_close",
"bracelet_open",
"case_closed",
"case_opened",
"crash_alarm",
"detach",

"g_sensor",
"input_change",
"light_sensor_bright",
"light_sensor_dark",
"lock_closed",
"lock_opened",
"lowpower",

"offline",

"parking",

"poweroff",

"poweron",

"sos",
"strap_bolt_cut",
"strap_bolt_ins",
"vibration_start",
"vibration_end",
"proximity_violation_start",
"proximity_violation_end",
"force_location_request",

"info"

plugin example

"hide_empty_tabs": true,
"plugin_id": 11,
"show_seconds": false,
"group_by_type": false,
"event_types": [

"force_location_request",

"info",

"inzone",

"outzone",

"speedup”

]

Geofence entry/exit events
A report on ins ad outs of a certain geofence.
parameters

default plugin_id: 89.

Plugin-specific parameters:

description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true,timestamps will be with seconds. boolean
min_minutes_in_zone Minimum minutes in a zone to start int

determining visit. If the device was in a zone
less than a specified time - the visit not count.

plugin example

"hide_empty_tabs": true,
"plugin_id": 89,
"show_seconds": false,

"min_minutes_in_zone": 5

SMS-locations report
A report on location requests over SMS channel.
parameters

default plugin_id: 20.

Plugin-specific parameters:

description type
hide_empty_tabs If true, empty tabs will be hidden. boolean
show_seconds If true timestamps will be with seconds. boolean

plugin example

{
"hide_empty_tabs": true,
"plugin_id": 20,
"show_seconds": false

}

Point report

Information on the points transmitted during the day. Maximum period is 24 hours.
parameters

default plugin_id: 91.

Plugin-specific parameters:

name description type

show_seconds If true,timestamps will be with seconds. boolean

plugin example

{

"show_seconds": true,
"plugin_id": 91
}

Eco-driving report by trackers

A report on safety driving by trackers. For report/generate request use trackers
parameter.

parameters
default plugin_id: 46.

Plugin-specific parameters:

name description type
harsh_driving_penalties A list of penalties for harsh driving. array of
objects
speeding_penalties A list of penalties for speeding. array of
objects
speed_limit Max permitted speed value. int
idling_penalty Penalty for idling. int
min_idling_duration A minimum time in minutes to determine int
idling.
min_speeding_duration A minimum time in minutes when speed int

is more than speed_limit to determine
violation.

use_vehicle_speed_limit If true vehicle speed limit used instead boolean
of speed_limit parameter.

show_seconds If true,timestamps will be with seconds. boolean

* harsh_driving_penalties is:

"harsh_driving_penalties": {
"harshAcceleration": 5,
"harshBraking": 5,
"harshTurn": 5,
"harshAccelerationNTurn": 12,
"harshBrakingNTurn": 12,
"harshQuickLaneChange": 12

* speeding_penalties is:

{
"speeding_penalties": {
"10": 2,
"20": 10,
"30": 25,
"50": 75
}
}

“10", "20", "30", "50" - the number of penalty points assigned for speeding by 10, 20, 30,
and 50 km/h.

plugin example

"speeding_penalties": {
"10": 2,
"20": 1@,
"30": 25,
"50": 75
b
"harsh_driving_penalties": {
"harshAcceleration": 5,
"harshBraking": 5,
"harshTurn": 5,
"harshBrakingNTurn": 12,
"harshAccelerationNTurn": 12,
"harshQuickLaneChange": 12
Ve
"speed_limit": 2680,
"idling_penalty": 5,
"min_speeding_duration": 1,
"min_idling_duration": 5,
"use_vehicle_speed_limit": true,
"plugin_id": 46,
"show_seconds": false

Eco-driving report by drivers

A report on safety driving by drivers. For report/generate request use employees
parameter.

parameters
default plugin_id: 82.

Plugin-specific parameters:

name description type
harsh_driving_penalties A list of penalties for harsh driving. array of
objects
speeding_penalties A list of penalties for speeding. array of
objects
speed_limit Max permitted speed value. int
idling_penalty Penalty for idling. int
min_idling_duration A minimum time in minutes to determine int
idling.
min_speeding_duration A minimum time in minutes when speed int
is more than speed_limit to determine
violation.
use_vehicle_speed_limit If true vehicle speed limit used instead boolean

of speed_limit parameter.

show_seconds If true,timestamps will be with seconds. boolean

plugin example

{
"speeding_penalties": {
“10": 2,
"20": 1@,
"30": 25,
"50": 75
Ve

"harsh_driving_penalties": {

"harshAcceleration": 5,
"harshBraking": 5,
"harshTurn": 5,
"harshBrakingNTurn": 12,
"harshAccelerationNTurn": 12,
"harshQuickLaneChange": 12
b
"speed_limit": 2680,
"idling_penalty": 5,
"min_speeding_duration": 1,
"min_idling_duration": 5,
"use_vehicle_speed_limit": true,
"plugin_id": 82,
"show_seconds": false

Stay in zones report
parameters
default plugin_id: 84

plugin-specific parameters:

description

show_seconds If true,time values in report should have boolean
format with seconds. Defaultis false.

show_tags If true, tags fields will be added to the boolean
report. Default is false.

min_minutes_in_zone Minimum time in zone (geofence). Default int, min
is 5. value 1

zone_ids IDs of user zones, required, min size 1, max int array
size 30

plugin example

"show_seconds": true,
"show_tags": true,
"min_minutes_in_zone": 1,
"zone_ids": [2143181, 2143182],
"plugin_id": 84

Stay in places report
parameters
default plugin_id: 85

plugin-specific parameters:

description

fetch_places_by_employees

hide_charts

min_minutes_in_place

place_ids

show_mileage

show_not_visited_places

show_seconds

plugin example

"show_seconds": true,

"min_minutes_in_place":
"fetch_places_by_employees”

"hide_charts": true,
"place_ids": [278645,
"show_mileage": true,

"show_not_visited_places":

"plugin_id": 85

If true,report will be built for places
that are related to selected trackers via
custom fields. Cannot be used in
conjunction with place_ids

If true, charts will be hidden.

Minimum time in spent in place.
Minimum value is 1, default is 5

IDs of user's POI. Min size 1, max size 30

Adds mileage to the report if true.

Will show non visited POls if true.

If true,time values in report should
have format with seconds. Default is

false.

false,

278646],

true,

boolean

boolean

int

int

array

boolean

boolean

boolean

Last update: February 13, 2023

Report schedule

Particular report can be delivered to user's mailbox regularly. Contains report schedule
object description and API calls to interact with it.

schedule_entry object:

{
tid": 1,
"enabled": true,
"parameters": {
"period": "1m",
"schedule": {
"type": "weekdays",
"weekdays": [1, 2, 3, 4, 5]
b
"report": {
"trackers": [1],
"title": "Title",
"time_filter": {
"from": "00:00:00",
"to": "23:59:59",
"weekdays": [1, 2, 3, 4, 5, 6, 7]
bo
"geocoder": "yandex",
“plugin”: {
"plugin_id": 4,
"show_idle_duration": false
}
b
"emails": ["email@example.ru"],
"email_format": "pdf",
"email_zip": false,
"sending_time": "12:00:00"
Jo
"fire_time": "2014-09-05 00:00:00",
"last_result": {
"success": true,
"id": 1
}
}

+ id -int. Schedule id, ignored on create.
* enabled - boolean. true if the scheduled report enabled.

* period - string. Report period, "Xm" | "w" | "d" | "y".

* emails - optional string array. List of emails.

* email_format - enum. Can be "pdf" | "xIs".

+ sending_time - optional string. Local time for sending reports, default "00:00:00",
hourly granularity.

« fire_time - optional string. Last schedule fire time, ignored on create/update.
« last_result object with last report creation result.

« id -int. An ID of generated report.

APl actions

API path: /report/schedule.

create
Creates a new report schedule entry.
required sub-user rights: reports.

parameters

description

schedule Schedule object without fields "id", "fire_time", JSON
"last_result". object
example
cURL

curl -X POST 'https://api.navixy.com/v2/report/schedule/create’ \

-H 'Content-Type: application/json' \

-d '{"hash": "abaa75587e5c59c32d347da438505fc3", "schedule":
{"enabled": true, "parameters": {"report": {"title": "Trip
report"”, "trackers": [669673], "time_filter": {"from": "00:00:00",
"to": "23:59:59", "weekdays": [1,2,3,4,5,6,7]}, "plugin”:
{"hide_empty_tabs": true, "plugin_id": 4, "show_seconds": false,
"include_summary_sheet_only": false, "split": true,
"show_idle_duration": false, "show_coordinates": false, "filter":
true, "group_by_driver": false}}, "period": "1w", "email_zip":
false, "email_format": "xls", "emails": ["test@example.com"],
"sending_time": "00:00:00", "schedule": {"type": "weekdays",
"weekdays": [1]}}}})

response

"success": true,
"id": 111
« id -int. An ID of the created schedule entry.
errors

+ 217 - List contains nonexistent entities - if one or more of tracker IDs belong to
nonexistent tracker (or to a tracker belonging to different user).

+ 222 - Plugin not found - if specified report plugin not found.

+ 236 - Feature unavailable due to.

delete
Deletes report schedule with the specified ID.

required sub-user rights: reports.

parameters
name description type
schedule_id ID of the report schedule to delete. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/report/schedule/delete"' \
-H '"Content-Type: application/json' \
-d '"{"hash": "abaa75587e5c59c32d347da438505fc3",
"schedule_id": 1234567}

HTTP GET

https://api.navixy.com/v2/report/schedule/delete?
hash=a6aa75587e5c59¢32d347da438505fc3&schedule_id=1234567

response

"success": true

errors

+ 201 - Not found in the database - if there is no schedule with specified ID.

list

Get all report schedules belonging to user.
required sub-user rights: reports.
parameters

Only APl key hash.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/report/schedule/list" \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59¢c32d347da438505fc3"}"

HTTP GET

https://api.navixy.com/v2/report/schedule/list?
hash=a6aa75587e5c59c32d347da438505fc3

response
{
"success": true,
"list": [{
"id": 1,

"enabled": true,
"parameters": {
"period": "1m",
"schedule": {
"type": "weekdays",
"weekdays": [1, 2, 3, 4, 5]

b
"report": {
"trackers": [1],
"title": "Title",
"time_filter": {
"from": "00:00:00",
"to": "23:59:59",
"weekdays": [1, 2, 3, 4, 5, 6, 7]
b
"geocoder": "yandex",
"plugin”: {

"plugin_id": 4,
"show_idle_duration": false

o
"emails": ["email@example.ru"],
"email_format": "pdf",
"email_zip": false,
"sending_time": "12:00:00"
b
"fire_time": "2014-09-05 00:00:00",
"last_result": {
"success": true,
"id": 1

}H

errors

General types only.

update
Update existing report schedule.
required sub-user rights: reports.

parameters

description

schedule Schedule object without fields "fire_time", "last_result". JSON object

example

cURL

curl -X POST 'https://api.navixy.com/v2/report/schedule/update’ \

-H 'Content-Type: application/json' \

-d '{"hash": "abaa75587e5c59c32d347da438505fc3", "schedule":
{"enabled": true, "parameters": {"report": {"title": "Trip
report”, "trackers": [669673], "time_filter": {"from": "00:00:00",
"to": "23:59:59", "weekdays": [1,2,3,4,5,6,7]}, "plugin":
{"hide_empty_tabs": true, "plugin_id": 4, "show_seconds": false,
"include_summary_sheet_only": false, "split": true,
"show_idle_duration": false, "show_coordinates": false, "filter":
true, "group_by_driver": false}}, "period": "1w", "email_zip":
false, "email_format": "xls", "emails": ["test@example.com"],
"sending_time": "00:00:00", "schedule": {"type": "weekdays",
"weekdays": [1]}}}}}'

response

"success": true

errors
+ 217 - List contains nonexistent entities - if one or more of tracker IDs belong to
nonexistent tracker (or to a tracker belonging to different user).
+ 222 - Plugin not found - if specified report plugin not found.

« 236 - Feature unavailable due to tariff restrictions - if device's tariff does not allow
usage of reports.

Last update: December 26, 2022

Report tracker

User reports allow acquiring all-round statistics and analytics. The summary data can
be shown in various perspectives, in tables and graphs.Contains API calls to interact
with tracker reports.

Find information on obtaining data from report in our how-tos.

APl actions

APl path: /report/tracker .

delete
Deletes a report from the database.

required sub-user rights: reports.

parameters
name description type
report_id ID of a report that should be deleted. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/delete’' \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "report_id":
1234567}

HTTP GET

https://api.navixy.com/v2/report/tracker/delete?
hash=a6aa75587e5¢c59¢32d347da438505fc3&report_id=1234567

response

"success": true

../../../../how-to/how-to-obtain-information-from-report/

errors

*+ 101 = In demo mode this function disabled.

download
Retrieve generated report as a file.

required sub-user rights: reports

parameters
name description type
report_id ID of a report that should be deleted. int
format A format of report that should be downloaded. Can be "xIs", enum
xIsx" or "pdf".
headless Optional parameter. Default= false . If need report without boolean
title page and TOC, setitto true.
examples
cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/download’' \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "report_id":
1234567, "format": "pdf"}

HTTP GET

https://api.navixy.com/v2/report/tracker/download?
hash=a6aa75587e5¢c59¢32d347da438505fc3&report_id=1234567&format=pdf

response
A report rendered to file (standard file download).
errors

+ 204 - Entity not found - if report with the specified ID not found.

+ 229 - Requested data is not ready yet - if report exists, but its generation is still in
progress.

generate
Requests a report generation with the specified parameters.

required sub-user rights: reports.

parameters

description type
from A string containing date/time. string
to A string containing date/time. Specified date must be string

after "from" date.

title Report title. Default title will be used if null. string
geocoder Which geocoder to use. See geocoder/. string
trackers List of trackers' IDs to be included in report (if report is by int
trackers). array
employees List of employees' IDs to be included in report (if report is int
by employees. For example, plugin ID 82). array
time_filter An object which contains everyday time and weekday JSON
limits for processed data, e.g. {"to":"18:00", object

"from":"12:00", "weekdays":[1,2,3,4,5]}.

plugin A plugin object (see below). JSON
object

Parameter object fields:

Part of parameters are plugin-specific. See "Tracker report plugins" section. Common
parameters are:

name description type

plugin_id An ID of a tracker report plugin which will be used to int
generate report.

../../../tracking/geocoder/
../../plugin/report_plugins/

description

show_seconds Flag to define whether time values in report should boolean
have format with seconds. true - show seconds,
false - don't show seconds.

Plugin example:

{
"details_interval_seconds": 300,
"plugin_id": 9,
"show_seconds": false,
"graph_type": "time",
"smoothing": false,
"sensors": |

{
"tracker_id": 123456,
"sensor_id": 123456
}
]
}
example
cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/generate’' \

-H 'Content-Type: application/json' \

-d '{"hash": "abaa75587e5c59c32d347da438505fc3", "title":
"Trip report", "trackers": [669673], "from": "20206-10-05
00:00:00", "to": "2020-10-06 23:59:59", "time_filter": {"from":
"00:00:00", "to": "23:59:59", "weekdays": [1,2,3,4,5,6,7]},
"plugin": {"hide_empty_tabs": true, "plugin_id": 4,
"show_seconds": false, "include_summary_sheet_only": false,
"split": true, "show_idle_duration": false, "show_coordinates":
false, "filter": true, "group_by_driver": false}}'

response

"success": true,
"id": 222

+ id -int. An ID of the report queued for generation. Can be used to request report
generation status and to retrieve generated report.

errors
+ 15 - Too many requests / rate limit exceeded - the number of reports created by one
user in parallel limited.

+ 211 - Requested time span is too big - interval from from to to is bigger then max
allowed time span (see response).

{
"success": false,
"status": {
“code": 211,
"description”: "Requested time span is too big"
b
"max_time_span": "P90D"
}

* max_time_span - string. ISO-8601 interval.

+ 217 - List contains nonexistent entities - when one or more of tracker IDs belong to
nonexistent tracker (or to a tracker belonging to different user).

+ 222 - Plugin not found - when specified report plugin not found.

+ 236 - Feature unavailable due to tariff restrictions - when one of the trackers has
tariff with disabled reports ("has_reports" is false).

list

Returns info about all available generated or in-progress reports.
required sub-user rights: reports.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/list' \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3"}"'

HTTP GET
https://api.navixy.com/v2/report/tracker/list?

hash=a6aa75587e5c59¢32d347da438505fc3

response

"success": true,"list": [

{

1}

"created": "2020-10-08 21:59:30",

"time_filter": {
"from":"00:00:00",
"to":"23:59:59",
"weekdays":[1,2,3,4,5,6,7]},

"title": "Trip report",

"id": 5601797,

"parameters"”: {
"geocoder": "google",

"trackers": [669673],
"plugins”: [{
"plugin_id": 4,
"“filter": true,
"hide_empty_tabs": true,
"show_coordinates": false,
"split": true,
"include_summary_sheet_only": false,
"show_seconds": false,
"group_by_driver": false,
"show_idle_duration": false

Bl
"locale_info": {
"locale": "ru_RU",
"time_zone": "Asia/Yekaterinburg",
"measurement_system": "metric"
}
b
"percent": 100,
"type": "user",

"“from": "2020-10-05 00:00:00",
“to": "2020-10-06 23:59:59"

created - string. Date when report created.
time_filter - object.

« from - string. Control time "from" of day.

* to - string. Control time "to" of day.

+ weekdays - int array. Control "weekdays" of the report. Can be 1-7.
title - string. Report title.
id -int. Report ID which can be used to retrieve or download report.
parameters - object with report parameters.

* trackers -int array. List of tracker IDs used for report.

* plugins - array of objects. List of parameters for all plugins which were used
to generate report.

« locale_info - object with information about the locale, timezone, and
measurement system used for the report.

* percent -int. Report readiness in percent.
* type - enum. Type of created report.
« from - string. "from" parameter from generate.

* to - string. "to" parameter from generate.
errors

+ General types only.

retrieve
Retrieves a generated report as JSON.

required sub-user rights: reports.

parameters
name description type
report_id ID of a report that should be deleted. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/report/tracker/retrieve’' \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "report_id":
1234567}

HTTP GET

https://api.navixy.com/v2/report/tracker/retrieve?
hash=a6aa75587e5c59c32d347da438505fc3&report_id=1234567

response

. Response

{
"success": true,
"report": {
"created": "2020-10-066 16:01:46",
"time_filter": {
"from": "00:00:00",
"to": "23:59:59",
"weekdays": [
1,
2
3,
4,
5,
6,
7
]
Jo
"title": "Trip report",
"id": 5602232,
"sheets": |
{
"header": "Samantha (Ford Focus)",
"sections": [
{
"data": [
{
"rows": [

{
"to": {
"v": "02:39 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601941188000.0,
"type": "value",
"location": {
"lat": 54.9218516,
"lng": 37.335545

bo
"from": {
"v": "00:47 - Selyatino, Naro-
Fominskii gor. okrug, Moscow Oblast, Russia, 143370",
"raw": 1601934439000.0,
"type": "value",
"location": {
"lat": 55.5311083,
"lng": 36.96743

b

"time": {
“v': "@1:52",
"raw": 6749.0,
"type": "value"

b

"length": {
“v': "106.29",
"raw": 106.29,
"type": "value"

tH

"avg_speed": {

“v": "57",
"raw": 57.0,
"type": "value"
b
"max_speed": {
“v"i o "94",
"raw": 94.0,
"type": "value"
}
Vo
{
"to": {

"v": "05:10 - Selyatino,
Fominskii gor. okrug, Moscow Oblast, Russia, 143370",
"raw": 1601950218000.0,
"type": "value",
"location": {
"lat": 55.5308216,
"lng": 36.967315

P
"from": {
"v": "@3:11 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601943083000.0,
"type": "value",
"location": {
"lat": 54.9218116,
"lng": 37.3354833

b
"time": {
“v": "01:58",
"raw": 7135.0,
"type": "value"
b
"length": {
“v'": "106.97",
"raw": 106.97,
"type": "value"
b
"avg_speed": {
“v":i "54",
"raw": 54.0,
"type": "value"
b
"max_speed": {
“v"io "94",
"raw": 94.0,
"type": "value"

"v'": "07:54 - Khievskii
pereulok, 10, TNKh, Rassudovo, Troitsky Administrative Okrug,
Moscow, Russia, 143340",

"raw": 1601960075000.0,

"type": "value",

Naro-

Fominskii gor.

Moscow Oblast,

pereulok,
Moscow, Russia,

10, TNKh,

okrug,

Russia,

Rassudovo,

"location": {
"lat": 55.4666366,
"lng": 36.9216966

bo
"from": {
"v": "@7:38 - Selyatino,
Russia, 143370",
"raw": 1601959081000.0,
"type": "value",
"location": {
"lat": 55.53122,

“Ing": 36.9672916

Moscow Oblast,

b
"time": {
“v'": "00:16"
"raw": 994.0,
"type": "value"
b
"length": {
"v": "10.03",
"raw": 10.03,
"type": "value"
b
"avg_speed": {
"v": "36",
"raw": 36.0,
"type": "value"
b
"max_speed": {
"v": "85",
! ": 85.0,

raw
"type": "value"

"to": {
"v': "09:36 - Serpukhov,
142253",
"raw": 1601966165000.0,
"type": "value",
"location": {
"lat": 54.926835,

"Ing": 37.3341066

T
“from": {
"v'": "07:58 - Khievskii
Troitsky Administrative Okrug,

143340",

raw 1601960315000.0,
"type": "value",
"location": {

"lat": 55.46661,
"lng": 36.9216516

“v': "01:37",
58560.0,

Naro-

"type": "value"

Bo
"length": {
"v": "95.31",
"raw": 95.31,
"type": "value"
Bo
"avg_speed": {
"v'": "59",
"raw": 59.0,
"type": "value"
Bo
"max_speed": {
"v'": "91",
"raw": 91.0,
"type": "value"
}
bo
{
"to": {
"v": "09:53 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601967190000.0,
"type": "value",
"location": {
"lat": 54.921935,
"lng": 37.33551
}
bo
"from": {
"v": "09:43 - Serpukhov,
Moscow Oblast, Russia, 142253",
"raw": 1601966585000.0,
"type": "value",
"location": {
"lat": 54.9264033,
"lng": 37.3336633
}
bo
"time": {
“v': "@0:10"
"raw": 605.0,
"type": "value"
bo
"length": {
"v'": "0.95",
"raw": 0.95,
"type": "value"
bo
"avg_speed": {
"v': "e",
"raw": 6.0,
"type": "value"
bo
"max_speed": {
"v'": "13",
"raw": 13.0,
"type": "value"
I3

"to": A

\

Fominskii gor. okrug, Moscow Oblast,

raw
“type“:

Russia,

"12:36 - Selyatino, Naro-
143370",
1601977017000.0,

"value",

"location": {

e

"from":

\

Moscow Oblast, Russia, 142253",

raw
“type“:

"lat":
"lng":

55.5309666,
36.9674183

"10:27 - Serpukhov,

1601969226000.0,
"value",

"location": {

raw
"type":

e

"length":

\

raw
"type":

e

"lat":
"lng":

54.92199383,
37.335495

"02:09",
: 7791.0,
"value"

{
"108.48",

108.48,
"value"

"avg_speed": {

\

"sg"

"raw": 50.0,

"type" :

e

"value"

"max_speed": {

\

raw
"type":

"to": {

v
ozero\", gor. okrug Serpukhov,

142279",

Dernopol'e,

raw
”type":

"gg"
89.0,
"value"

"16:01 - KhP \"Lesnoe
Moscow Oblast, Russia,

1601989300000.0,
"value",

"location": {

5

"from":

\

Fominskii gor. okrug, Moscow Oblast,

raw
”type":

"lat":
"lng":

Russia,

54.9875133,
37.3093183

"13:34 - Selyatino, Naro-
143370",
1601980444000.0,

"value",

"location": {

"lat":
"lng":

55.5309966,
36.96738

}

Bo

"time": {
"v": "02:27",
"raw": 8856.0,
"type": "value"

Bo

"length": {
"v": "95,79",
"raw": 95.79,
"type": "value"

Bo

"avg_speed": {
"v": "39",
"raw": 39.0,
"type": "value"

Ws

"max_speed": {
"v": "88",
"raw": 88.0,
"type": "value"

}

}
s
"total": {
"text": "In total:",
"time": {
"v": "10:33",
"raw": 379860.0,
"type": "value"
b
"length": {
"v": "523.8",
"raw": 523.8,
"type": "value"

b
"avg_speed": {
“v": "50",
"raw": 50.0,
"type": "value"
b
"max_speed": {
“v'io "94",
"raw": 94.0,
"type": "value"
}

bo
"header": "Oct 6, 2020 (Tue)
}
I,
"type": "table",
"header": "Trips",
"columns": [

{

"align":
"field":
"title":
"width":

"left",

"from",

"Movement start",
4,

"weight": 3,
"highlight_min_max": false

7"

b
{

}
I,

"align":
"field":
"title":
"width":
"weight"

"left",

"to"

"Movement end",
4,

$3,

"highlight_min_max": false

"align":
"field":
"title":
"width":

"weight":

"right",

"length",

"Total trips length, \nkm",
P

9,

"highlight_min_max": false

"align":
"field":
"title":
"width":
"weight"

"right",
"time",
"Travel time",
1

’

.0,

"highlight_min_max": false

"align":
"field":
"title":
"width":
"weight"

"right",

"avg_speed",

"Average speed, \nkm/h",
1,

.0,

"highlight_min_max": false

"align":
"field":
"title":
"width":

"weight":

"right",
"max_speed",

"Max. speed, \nkm/h",
1,

0,

"highlight_min_max": false

"column_groups":

"rows":

[]

[

TR TS

"raw": 7.0,
"name": "Trips",

"highlight": false

"y": "523.8"
"raw": 523.8,
"name": "Total trips length, km",

"highlight": false

"yt "19:33"
"raw": 633.0,

"name" :

'Travel time",

"highlight": false

bo
{
"v'": "50",
"raw": 50.0,
"name": "Average speed, km/h",
"highlight": false
Vo
{
"v'": "94",
"raw": 94.0,
"name": "Max. speed, km/h",
"highlight": false
o
{
"v": "515855",
"raw": 515855.0,
"name": "Odometer value *, km",
"highlight": false
}
I
"type": "map_table",
"header": "Summary"
o
{
"text": "Odometer value at the end of the
selected period.",
"type": "text",
"style": "small_print"
}
Il
"entity_ids": [
311852

1,
"additional_field": ""
}
1,
"from": "2020-10-06 00:00:00",
"to": "2020-10-06 23:59:59"

* report - object. Body of the generated report. Its contents are plugin-dependent.
errors

+ 204 - Entity not found - if report with the specified ID not found.

+ 229 - Requested data is not ready yet - if report exists, but its generation is still in
progress.

status

Returns a report generation status for the specified report id.

required sub-user rights: reports.

parameters

description

report_id ID of a report that should be deleted. int

examples

cURL
curl -X POST 'https://api.navixy.com/v2/report/tracker/status' \
-H 'Content-Type: application/json' \
-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "report_id":
1234567}
HTTP GET
https://api.navixy.com/v2/report/tracker/status?

hash=a6aa75587e5¢c59¢32d347da438505fc3&report_id=1234567

response

"success": true,
"percent_ready": 75
}

* percent_ready - int. Report readiness in percent.
errors

+ 204 - Entity not found - if report with the specified ID not found.

Last update: August 1, 2023

Subuser

Contains API calls related to sub-users, that is, additional users who have access to
your account and monitoring assets. Sub-users is a convenient way for corporate
clients to provide multiple employees, who have different roles and privileges, with
access to the monitoring system.

"Usual” user account called "master account" in relation to sub-users.

Every sub-user can operate on a subset of trackers from your "master account". Every
entity, which is associated with unavailable trackers, also becomes hidden from sub-
user. This is called "scoping". Sub-users' rights can also be limited to prevent
unauthorized changes to your data and application setting.

NOTE: Sub-users cannot have any "exclusive" objects. Every tracker, rule, task, etc., even
created or edited by sub-user, still belongs to your account. The only exception is
reporting system: every sub-user has its own reports pool and reports schedule.

Sub-user object structure

Sub-user object is almost identical to usual user.

{
"id": 183,
"activated": true,
"login": "user@test.com",
"first_name": "Charles",
"middle_name": "Henry",
"last_name": "Pearson",

"legal_type": "legal_entity",

"phone": "491761234567",
"post_country": "Germany",
"post_index": "61169",

"post_region": "Hessen",

"post_city": "Wiesbaden",
"post_street_address": "Marienplatz 2",
"registered_country": "Germany",
"registered_index": "61169",
"“registered_region": "Hessen",
"“registered_city": "Wiesbaden",
"“registered_street_address": "Marienplatz 2",
"state_reg_num": "12-3456789",

“tin": "1131145180",

"legal_name": "E. Biasi GmbH",

"o n, wnn
’

"security_group_id": 333,

“creation_date": "2016-05-20 00:00:00"

+ id -int. Sub-user's ID, can be null (when creating new sub-user).

+ activated - boolean. true if sub-user activated (allowed to log in).

* login - string. Sub-user email as login. Must be valid unique email address.
« first_name - string. Sub-user's or contact person first name.

* middle_name - string. Sub-user's or contact person middle name.

+ last_name - string. Sub-user's or contact person last name.

+ legal_type - enum. Can bed "legal_entity", "individual" or "sole_trader".

* phone - string. Sub-user's or contact phone (10-15 digits).

* post_country - string. Country part of sub-user's post address.

* post_index - string. Index part of sub-user's post address.

* post_region - string. Region part of sub-user's post address.

* post_city - string. City from postal address.

* post_street_address - string. Street address.

* registered_country - string. Country part of sub-user's registered address.
* registered_index - string. Index part of sub-user's registered address.

* registered_region - string. Region part of sub-user's registered address.

* registered_city - string. City from registered address.

* registered_street_address - string. Sub-user's registered address.

* state_reg_num - string. State registration number. E.g. EIN in the USA, OGRN in
Russia. 15 characters max.

+ tin - string. Taxpayer identification number aka "VATIN" or "INN".
+ legal_name - string. Sub-user's legal name (for "legal_entity" only).

+ iec - optional string. Industrial Enterprises Classifier aka "KPP" (used in Russia.
For "legal_entity" only).

* security_group_id -int. An ID of the security group to which sub-user belongs to.
Can be null, which means default group with no privileges.

« creation_date - date/time. Date and time when sub-user was created. This field is
read-only, it should not be used in subuser/update.

APl actions

APl path: /subuser .

delete
Deletes sub-user. This operation cannot be reversed.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters
name description type
subuser_id ID of the sub-user belonging to current account. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/subuser/delete' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d04da2celaf111b", "subuser_id":
123567}

HTTP GET

https://api.navixy.com/v2/subuser/delete?
hash=a6aa75587e5¢c59¢32d347da438505fc3&subuser_id=123567

response
{
"success": true
}
errors

+ 13 — Operation not permitted — if user has insufficient rights.

+ 236 — Feature unavailable due to tariff restrictions - if there is at least one tracker
without multilevel_access tariff feature.

+ 201 = Not found in the database — if sub-user with such an ID does not exist or
does not belong to current master user.

list

List all sub-users belonging to current user.

required tariff features: multilevel_access — for ALL trackers. required sub-user

rights: admin (available only to master users).
parameters

Only APl key hash.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/subuser/list'
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/subuser/list?
hash=a6aa75587e5c59¢32d347da438505fc3

response
{

"success": true,

"list": [{
"id": 183,
"activated": true,
"login": "user@test.com",
"first_name": "Charles",
"middle_name": "Henry",
"last_name": "Pearson",

"legal_type": "legal_entity",

“phone": "491761234567",
"post_country": "Germany",
"post_index": "61169",

"post_region": "Hessen",

"post_city": "Wiesbaden",
"post_street_address": "Marienplatz 2",
“registered_country": "Germany",
"registered_index": "61169",
"registered_region": "Hessen",
"“registered_city": "Wiesbaden",
"registered_street_address": "Marienplatz 2",
"state_reg_num": "12-3456789",

“tin": "1131145180",

"legal_name": "E. Biasi GmbH",

“iec": "",

"security_group_id": 333,
"creation_date": "2016-05-20 00:00:00"

\

13

« list - array of objects. List of all sub-users belonging to this master account.
Sub-user object described here.
errors

+ 13 - Operation not permitted - if user has insufficient rights.

+ 236 — Feature unavailable due to tariff restrictions - if there is at least one tracker
without multilevel_access tariff feature.

register
Allows you to create sub-users associated to your master account.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters

description

user subuser object without id field. JSON object

password New sub-user's password. 6 to 20 characters. string
example

cURL

curl -X POST 'https://api.navixy.com/v2/subuser/register' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "password":

123456, "user": {"activated": true, "login": "user@test.com",
"first_name": "Charles", "middle_name": "Henry", "last_name":
"Pearson", "legal_type": "legal_entity", "phone": "491761234567",
"post_country": "Germany", "post_index": "61169", "post_region":
"Hessen", "post_city": "Wiesbaden", "post_street_address":
"Marienplatz 2", "registered_country": "Germany",
"registered_index": "61169", "registered_region": "Hessen",
"registered_city": "Wiesbaden", "registered_street_address":

"Marienplatz 2", "state_reg_num": "12-3456789", "tin":
"1131145180", "legal_name": "E. Biasi GmbH", "iec": "",
"security_group_id": 333}}'

response

"success": true,
"id": 121458
« id -int. An ID of the created sub-user.

errors

+ 13 - Operation not permitted - if user has insufficient rights.

+ 236 — Feature unavailable due to tariff restrictions - if there is at least one tracker
without multilevel_access tariff feature.

+ 201 - Not found in the database — when specified security_group_id does not exist.

+ 206 - login already in use - if this login email already registered.

update
Updates sub-user data.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters

name description type

user subuser object with id field. JSON object

example

cURL

curl -X POST 'https://api.navixy.com/v2/subuser/update' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "user":

{"id": 123451, "activated": true, "login": "user@test.com",
"first_name": "Charles", "middle_name": "Henry", "last_name":
"Pearson", "legal_type": "legal_entity", "phone": "491761234567",
"post_country": "Germany", "post_index": "61169", "post_region":
"Hessen", "post_city": "Wiesbaden", "post_street_address":
"Marienplatz 2", "registered_country": "Germany",
"registered_index": "61169", "registered_region": "Hessen",
"registered_city": "Wiesbaden", "registered_street_address":
"Marienplatz 2", "state_reg_num": "12-3456789", "tin":

"1131145180", "legal_name": "E. Biasi GmbH", "iec": ""
"security_group_id": 333}}'

’

response
{
"success": true
}
errors

+ 13 - Operation not permitted - if user has insufficient rights.

+ 236 — Feature unavailable due to tariff restrictions - if there is at least one tracker
without multilevel_access tariff feature.

+ 201 = Not found in the database - if sub-user with such an ID does not exist or
does not belong to current master user. Also, when specified security_group_id
does not exist.

Last update: June 28, 2023

Subuser places

Contains API calls to control which places is available to which sub-user.

APl actions

API path: /subuser/places.

bind
Gives access for sub-user to specified places.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters

name description type

subuser_id ID of a sub-user belonging to current account. int

access_to_all Optional. If true then sub-user will have access to all boolean
places of master user.

place_ids Optional. List of place IDs to associate with a specified int
sub-user. All places must belong to current master array
user.

. At least one of access_to_all and place_ids parameters must be not null.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/subuser/places/bind"' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "subuser_id":
204951, "access_to_all": false, "place_ids": [7548]}'

response

{

"success": true

}

errors

+ 13 - Operation not permitted - if user has insufficient rights.

+ 201 — Not found in the database - if sub-user/place does not exist or does not
belong to current master user.

- 236 - Feature unavailable due to tariff restrictions (if there is at least one tracker
without multilevel_access tariff feature).

unbind
Disables access for a sub-user to specified places.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters
name description type
subuser_id ID of a sub-user belonging to current account. int
place_ids List of place IDs to associate with a specified sub-user. All int
places must belong to current master user. array
examples
cURL

curl -X POST 'https://api.navixy.com/v2/subuser/places/unbind’' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d04da2celaf111b", "subuser_id":
204951, "place_ids": [7548]}'

response

{

"success": true

}

errors

+ 13 — Operation not permitted — if user has insufficient rights.

+ 2071 — Not found in the database - if sub-user/place not exist or does not belong to
current master user.

- 236 — Feature unavailable due to tariff restrictions (if there is at least one tracker
without multilevel_access tariff feature).

list_ids
Gets a list of place IDs to which this sub-user has access.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters

description

subuser_id ID of a sub-user belonging to current account. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/subuser/places/list_ids"' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d04da2celaf111b", "subuser_id":
204951}

response

"success": true,
"access_to_all": true,
"list" : [7548]

errors

+ 13 — Operation not permitted — if user has insufficient rights.

+ 201 = Not found in the database - if sub-user with such an ID does not exist or
does not belong to current master user.

+ 236 — Feature unavailable due to tariff restrictions (if there is at least one tracker
without multilevel_access tariff feature).

list
Gets a list of places to which this sub-user has access.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters

description

subuser_id ID of a sub-user belonging to current account. int

filter Optional. Filter for place label, description, address, external ID and stri
custom fields.

tag_ids Optional. Tag IDs assigned to places. Places found must include all int

tags from a list. arri
offset Optional. Offset from start of found places for pagination. int
limit Optional. Limit of found places for pagination. int
order Optional. Specify list ordering. Can be any of id, label, ent

description, location, external_id, assigned_date . Default

order by id.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/subuser/places/list"' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "subuser_id":
204951, "offset": @, "limit": 1000}’

response

"success": true,
"access_to_all": false,
"list" : [<place>, ...],
"count": 12

errors

+ 13 — Operation not permitted — if user has insufficient rights.

+ 201 = Not found in the database - if sub-user with such an ID does not exist or

does not belong to current master user.

- 236 — Feature unavailable due to tariff restrictions (if there is at least one tracker
without multilevel_access tariff feature).

Last update: December 26, 2023

Subuser security group

Contains security group object structure and API calls related to security groups, that is,
groups of sub-users with the specified set of rights and privileges.

Security group object structure

{
"id": 103,
"label": "Managers",
"privileges": {
"rights": ["tag_update", "tracker_register"],
"store_period": "1d"
}
}

+ id -int. Group id, can be null (when creating new security group).
+ label - string. Group label.
* privileges - object containing privileges of group.
« rights - string array. A set of rights granted to security group (see below).

* store_period - optional string. Period of viewing history in legacy duration
format, e.g. "2h" (2 hours), "3d" (3 days), "5m" (5 months), "1y" (one year).

Default security group

Default (or empty) security group is the group which is effective when sub-users'
security_group_id is null. It has empty rights array.

Master user's rights

Master user always has all rights, including exclusive "admin" right.

Security group rights

Absolute majority of read operations does not require any rights (that is, they are
available to all sub-users, even with "null" security group). However, some entities may

be hidden because they are associated with the trackers unavailable to sub-user. Most
of data-modifying operations, on the contrary, require some rights to be present.

Possible rights are:

« admin — master user-only. Can't be assigned to security groups,
* tracker_update,

* tracker_register,

+ tracker_rule_update,

« tracker_configure,

* tracker_set_output,

* tag_update,

+ task_update,

+ zone_update,

* place_update,

+ employee_update,

+ vehicle_update,

* payment_create

« form_template_update,
* reports,

+ checkin_update.

APl actions

API path: /subuser/security_group/ .

Create
Creates new security group.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters

name description type

group security_group object without "id" field. JSON object
example

cURL

curl -X POST 'https://api.navixy.com/v2/subuser/security_group/
create' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "group":

{"label": "Managers", "privileges": {"rights": ["tag_update"”,
"tracker_register"], "store_period": "1d"}}}'

response
{

"success": true,
"id": 103
« id -int. An ID of the created security group.
errors

+ 13 - Operation not permitted - if user has insufficient rights.

+ 236 — Feature unavailable due to tariff restrictions - if there is at least one tracker
without multilevel_access tariff feature.

delete

Deletes existing security group. All sub-users belonging to this group will be assigned to
default (null) security group.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters

name description type

security_group_id ID of security group, which must be deleted. int
examples

cURL

curl -X POST 'https://api.navixy.com/v2/subuser/security_group/
delete' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "id": 103}’

HTTP GET

https://api.navixy.com/v2/subuser/security_group/delete?
hash=a6aa75587e5c59¢c32d347da438505fc3&id=103

response
{
"success": true
}
errors

+ 13 - Operation not permitted - if user has insufficient rights.

+ 201 - Not found in the database — when group with the specified security_group_id
does not exist.

+ 236 — Feature unavailable due to tariff restrictions - if there is at least one tracker
without multilevel_access tariff feature.

list
List all security groups belonging to current user.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters

Only APl key hash.

examples

cURL
curl -X POST 'https://api.navixy.com/v2/subuser/security_group/
list' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"’
HTTP GET

https://api.navixy.com/v2/subuser/security_group/list?
hash=a6aa75587e5¢c59c32d347da438505fc3

response
{

"success": true,

"list": [
"id": 103,
"label": "Managers",
"privileges": {
"rights": ["tag_update", "tracker_register"],
"store_period": "1d"
}

}]

+ list - array of objects. List of all security groups belonging to this master account.
errors

+ 13 — Operation not permitted - if user has insufficient rights.

+ 236 - Feature unavailable due to tariff restrictions (if there is at least one tracker
without multilevel_access tariff feature).

update
Updates existing security group.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters

name description type

group security_group with "id" field. JSON object

example

cURL

curl -X POST 'https://api.navixy.com/v2/subuser/security_group/
update' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "group":
"id": 103, "label": "Managers", "privileges": {"rights":

["tag_update", "tracker_register"], "store_period": "1d"}}}'
response
{
"success": true
}
errors

+ 13 — Operation not permitted — if user has insufficient rights.

+ 201 - Not found in the database — when security group with the specified ID does
not exist.

+ 236 — Feature unavailable due to tariff restrictions - if there is at least one tracker
without multilevel_access tariff feature.

assign
Assigns (removes) a security group to sub-users.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters

description type

group_id Nullable, ID of a security group int

subuser_ids IDs of sub-users int array

example

cURL

curl -X POST 'https://api.navixy.com/v2/subuser/security_group/
assign' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d0@4da2celaf111b", "group_id":
3, subuser_ids: [12, 34]}'

response
{
"success": true
}
errors

+ 13 — Operation not permitted — if user has insufficient rights.

+ 201 - Not found in the database — when security group with the specified ID does
not exist.

+ 236 — Feature unavailable due to tariff restrictions - if there is at least one tracker
without multilevel_access tariff feature.

Last update: December 26, 2023

Subuser session

Sub-user session actions to obtain its hash.

APl actions

API path: /subuser/session/ .

create

Creates a new session for the specified sub-user and obtain its hash. Can be used to
log in to sub-user's accounts.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters
name description type
subuser_id ID of the sub-user belonging to current account. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/subuser/session/create' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "subuser_id":
204951}

HTTP GET

https://api.navixy.com/v2/subuser/session/create?
hash=a6aa75587e5c59¢c32d347da438505fc3&subuser_id=204951

response

"success": true,

"hash" : "22eacl1c27af4be7b9d04da2celaf111b"

* hash - string. Hash of the created sub-user session.
errors

+ 13 — Operation not permitted — if user has insufficient rights.

« 236 — Feature unavailable due to tariff restrictions - if there is at least one tracker
without multilevel_access tariff feature.

+ 201 = Not found in the database - if sub-user with such an ID does not exist or
does not belong to current master user.

Last update: December 26, 2022

Subuser tracker

Contains API calls to control which tracker is available to which sub-user.

APl actions

API path: /subuser/tracker .

bind

Gives access for sub-user to the specified trackers.

required tariff features: multilevel_access — for ALL trackers. required sub-user

rights: admin (available only to master users).

parameters
name description
subuser_id ID of the sub-user belonging to current account.
trackers List of tracker IDs to associate with the specified sub-user.
All trackers must belong to current master user.
examples
cURL

curl -X POST 'https://api.navixy.com/v2/subuser/tracker/bind"' \
-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "subuser_id"

204951, "trackers": [127830]}"
HTTP GET

https://api.navixy.com/v2/subuser/tracker/bind?

type

int

int
array

hash=a6aa75587e5c59¢c32d347da438505fc3&subuser_id=204951&trackers=[1278

response

"success": true

errors

+ 13 — Operation not permitted — if user has insufficient rights.

+ 236 — Feature unavailable due to tariff restrictions - if there is at least one tracker
without multilevel_access tariff feature.

+ 201 = Not found in the database - if sub-user with such an ID does not exist or
does not belong to current master user.

+ 262 - Entries list is missing some entries or contains nonexistent entries — if one or
more of specified tracker IDs don't exist.

list
Gets a list of tracker IDs to which this sub-user has access.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters
name description type
subuser_id ID of the sub-user belonging to current account. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/subuser/tracker/list' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "subuser_id":
204951}

HTTP GET

https://api.navixy.com/v2/subuser/tracker/list?
hash=a6aa75587e5¢c59¢32d347da438505fc3&subuser_id=204951

response

"success": true,
"list" : [124588]

+ list -int array. List of tracker IDs to which this sub-user has access.

errors

+ 13 — Operation not permitted — if user has insufficient rights.

+ 236 — Feature unavailable due to tariff restrictions - if there is at least one tracker
without multilevel_access tariff feature.

+ 201 = Not found in the database - if sub-user with such an ID does not exist or
does not belong to current master user.

unbind
Disables access for sub-user to the specified trackers.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters
name description type
subuser_id ID of the sub-user belonging to current account. int
trackers List of tracker IDs to associate with the specified sub-user. int
All trackers must belong to current master user. array
examples
cURL

curl -X POST 'https://api.navixy.com/v2/subuser/tracker/unbind"' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "subuser_id":
204951, "trackers": [127830]}"

HTTP GET

https://api.navixy.com/v2/subuser/tracker/unbind?
hash=a6aa75587e5c59¢c32d347da438505fc3&subuser_id=204951&trackers=[1278

response

"success": true

errors

+ 13 — Operation not permitted — if user has insufficient rights.

+ 236 — Feature unavailable due to tariff restrictions (if there is at least one tracker
without multilevel_access tariff feature).

+ 201 = Not found in the database - if sub-user with such an ID does not exist or
does not belong to current master user.

+ 262 - Entries list is missing some entries or contains nonexistent entries — if one or
more of specified tracker IDs don't exist.

Last update: January 15, 2023

Subuser geofences

Contains API calls to control which geofences is available to which sub-user.

APl actions

API path: /subuser/zones.

bind
Gives access for sub-user to specified geofences.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters
name description type
subuser_id ID of a sub-user belonging to current account. int
access_to_all Optional. If true then sub-user will have access to all boolean
geofences of master user.
zone_ids Optional. List of geofence IDs to associate with a int

specified sub-user. All geofences must belong to array
current master user.

. At least one of access_to_all and zone_ids parameters must be not null.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/subuser/zones/bind' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "subuser_id":
204951, "access_to_all": false, "zone_ids": [7548]}"'

response

"success": true

errors

+ 13 - Operation not permitted - if user has insufficient rights.

+ 201 — Not found in the database - if sub-user/geofence does not exist or does not
belong to current master user.

- 236 - Feature unavailable due to tariff restrictions (if there is at least one tracker
without multilevel_access tariff feature).

unbind
Disables access for sub-user to specified geofences.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters
name description type
subuser_id ID of a sub-user belonging to current account. int
zone_ids List of geofence IDs to associate with a specified sub-user. int
All geofences must belong to current master user. array
examples
cURL

curl -X POST 'https://api.navixy.com/v2/subuser/zones/unbind"' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d04da2celaf111b", "subuser_id":
204951, "zone_ids": [7548]}"'

response

"success": true

errors

+ 13 — Operation not permitted — if user has insufficient rights.

+ 207 — Not found in the database - if sub-user/geofence not exist or does not
belong to current master user.

- 236 — Feature unavailable due to tariff restrictions (if there is at least one tracker
without multilevel_access tariff feature).

list_ids
Gets a list of geofence IDs to which this sub-user has access.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters

description

subuser_id ID of a sub-user belonging to current account. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/subuser/zones/list_ids"' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d04da2celaf111b", "subuser_id":
204951}

response

"success": true,
"access_to_all": true,
"list" : [7548]

errors

+ 13 — Operation not permitted — if user has insufficient rights.

+ 201 = Not found in the database - if sub-user with such an ID does not exist or
does not belong to current master user.

+ 236 — Feature unavailable due to tariff restrictions (if there is at least one tracker
without multilevel_access tariff feature).

list
Gets a list of geofences to which this sub-user has access.

required tariff features: multilevel_access — for ALL trackers. required sub-user
rights: admin (available only to master users).

parameters
name description type
subuser_id ID of a sub-user belonging to current account. int
filter Optional. Filter for geofence label. string
tag_ids Optional. Tag IDs assigned to geofences. Geofences found int
must include all tags from a list. array
offset Optional. Offset from start of found geofences for int
pagination.
limit Optional. Limit of found geofences for pagination. int
order Optional. Specify list ordering. Can be any of id, label. enum
Default order by id.
examples
cURL

curl -X POST 'https://api.navixy.com/v2/subuser/zones/list' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "subuser_id"
204951, "offset": @, "limit": 1000}’

response

"success": true,
"access_to_all": false,
"list" : [<zone>, ...],
"count": 12

errors

+ 13 — Operation not permitted — if user has insufficient rights.

+ 201 = Not found in the database - if sub-user with such an ID does not exist or

does not belong to current master user.

- 236 — Feature unavailable due to tariff restrictions (if there is at least one tracker
without multilevel_access tariff feature).

Last update: December 26, 2023

Tag

Tag is a label, or a key word that is used for a quick and easy search. They help find the
needed places, geofences, employees, tasks, trackers, and vehicles. Contains tag object
and API calls to interact with it.

Find more information about tags APl usage in our how-tos.

Tag object
{
"id": 3,
"avatar_file_name": "avatar.jpg",
“name": "hop",

"color": "FFo000"

+ id -int. Tag ID.
+ avatar_file_name - optional string. File name with extension.
* name - string. Tag's name.

* color - string. Tag color in 3-byte RGB hex format.
tagged entity types

* place

* task

* task_schedule
* employee

+ vehicle

* zone

« tracker

APl actions

API path: /tag.

../../../how-to/tags-usage/

create
Creates a new tag.
required sub-user rights: tag_update.

parameters

name description type

tag Tag object without id field. JSON object

examples

cURL

curl -X POST 'https://api.navixy.com/v2/tag/create’ \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d04da2celaf111b", "tag"
{"name": "hop", "color": "FF0000"}}'

HTTP GET

https://api.navixy.com/v2/tag/create?
hash=a6aa75587e5c59c32d347da438505fc3&tag={"name": "hop", "color":
"FF0000"}

response

"success": true,
"id": 111
* id -int. An ID of the created tag.
errors

General types only.

delete
Deletes tag with the specified ID.

required sub-user rights: tag_update.

parameters

To delete tags, only one of the following parameters must be specified.

description type
tag_id ID of the tag to delete. int
tag_ids An array of tag IDs to delete. int array
examples
cURL

curl -X POST 'https://api.navixy.com/v2/tag/delete’' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "tag_id": 1}’

HTTP GET

https://api.navixy.com/v2/tag/delete?
hash=a6aa75587e5c59¢c32d347da438505fc3&tag_id=1

response
{
"success": true
}
errors

+ 201 — Not found in the database - if there is no tag with such an ID. This error will
not occur if the tag_ids parameter is specified, deletion is silent in this case.

list
Gets all tags belonging to user with optional filtering.

parameters

name description type

filter Optional filter for tag name. 3-60 characters or null. string

examples

cURL

curl -X POST 'https://api.navixy.com/v2/tag/list"' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/tag/list?
hash=a6aa75587e5c59¢c32d347da438505fc3

response
{
"success": true,
"list": [{
"id": 3,
"avatar_file_name": "avatar.jpg",
“name": "hop",
"“color": "FFoO000"
}]
}
errors

General types only.

search
Search entities that bound with all of specified tags.

parameters

description type

tag_ids List of tag IDs to search. int array

entity_types Optional. List of tagged entity types to filter. string array

examples

cURL

curl -X POST 'https://api.navixy.com/v2/tag/search' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "tag_ids":
[1, 2, 3]}

HTTP GET

https://api.navixy.com/v2/tag/search?
hash=a6aa75587e5¢c59¢c32d347da438505fc3&tag_ids=[1, 2, 3]

response
{

"success": true,

"result": {
"place": [<place>],
"task": [<task>],
"task_schedule": [<task_schedule>],
"employee": [<employee>],
"vehicle": [<vehicle>],
"zone": [<zone>],
"tracker": [<tracker>]

+ place - array of objects. List of place objects.

+ task - array of objects. List of task objects.

+ task_schedule - array of objects. List of task_schedule objects.
+ employee - array of objects. List of employee objects.

+ vehicle - array of objects. List of vehicle objects.

+ zone - array of objects. List of zone objects.

* tracker - array of objects. List of tracker objects.
errors

General types only.

update
Updates existing tag.

required sub-user rights: tag_update.

parameters

name description type

tag Tag object with id field. JSON object
examples

cURL

curl -X POST 'https://api.navixy.com/v2/tag/update’ \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "tag": {"id"
3, "name": "hop", "color": "FFeeee"}}'

HTTP GET

https://api.navixy.com/v2/tag/update?
hash=a6aa75587e5c59c32d347da438505fc3&tag={"id": 3, "name": "hop",
"color": "FFoeee"}'

response
{
"success": true
}
errors

+ 201 - Not found in the database - if there is no tag with such an ID.

Last update: August 1, 2023

Tag avatar

Contains API calls to interact with tag avatars.

APl actions

API path: /tag/avatar.

assign
Assigns icon_id (from standard icon set) to specified tag.

required sub-user rights: tag_update.

parameters
name description type
tag_id ID of the tag to assign. int
icon_id Icon to assign to tag. Can be null - this means that uploaded int
avatar should be used instead of icon.
examples
cURL

curl -X POST 'https://api.navixy.com/v2/tag/avatar/assign' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "tag_id": 1,
"icon_id": 14}

HTTP GET

https://api.navixy.com/v2/tag/avatar/assign?
hash=a6aa75587e5c59c32d347da438505fc3&tag_id=1&icon_id=14

response

"success": true

errors

+ 201 - Not found in the database - when vehicle with specified tag_id not found.

upload

Uploads avatar image for specified tag.
Then it will be available from [api_base_url]/[api_static_path]/tag/avatars/
<file_name>

e.g. https://api.navixy.com/v2/static/tag/avatars/abcdef123456789.png.
required sub-user rights: tag_update.
avatar_file_name returned in response and will be returned from /tag/list.

MUST be a POST multipart request (multipart/form-data), with one of the parts being an
image file upload (with the name file).

File part mime type must be one of:
* image/jpeg
* image/pjpeg
* image/png

* image/gif

* image/webp

parameters
tag_id ID of the tag to upload.
file Image file.
redirect_target Optional. URL to redirect. If redirect_target passed return

redirect to <redirect_target>?response=<urlencoded response

json>

response

"success": true,

"value": "avatar.jpg"

+ value - string. Avatar file name.
errors

+ 201 — Not found in the database - when tag with specified tag_id not found.
+ 233 — No data file - if file part not passed.
+ 234 - Invalid data format - if passed file with unexpected mime type.

+ 254 - Cannot save file - on some file system errors.

Last update: December 26, 2022

User

A user account lets you start working with the platform as well as customize your
experience within it. Contains user object structure and API calls to interact with users.

User object structure

"success": true,
"paas_id": 7,
"paas_settings": <paas_settings>,
"user_info": {
"id": 43568,
"login": "demo@navixy.com",
"title": "John Smith",
"phone": "79123456789",
"creation_date": "2016-05-20 01:10:34",
"balance": 74.31,

"bonus": 9,
"locale": "en_US",
"demo" : true,
"verified" : true,
"legal_type" : "individual",
"default_geocoder": "google",
"“route_provider": "google",
"time_zone": "America/New_York",
"measurement_system" : "metric",
"tin": "2345678239",
"iec": "",
"post_country": "USA",
"post_region": "NY",
"post_index": "10120",
"post_city": "New York",
"post_street_address": "1556 Broadway, suite 416",
"registered_country": "USA",
"registered_region": "NY",
"registered_index": "16120",
"registered_city": "New York",
"registered_street_address": "1556 Broadway, suite 416",
"first_name": "John",
"middle_name": "Walker",
"last_name": "Smith",
"legal_name": "QWER Inc."

be

"master": {
"id": 1234,
"demo" : false,
"legal_type": "individual",

"first_name": "David",

"middle_name": "Middle",

"last_name": "Blane",
"legal_name": "Blah LLC",
"title": "David Blane",

"balance": 0.0,
"bonus": 89.78

b
"tariff_restrictions": {
"allowed_maps": ["roadmap", "osm"]
b
"premium_gis": true,
"features": ["branding_web"],
"privileges”: {
"rights": ["tag_update"]
}

paas_id -int. Dealer ID.
paas_settings - object. The same as settings in /dealer/get_ui_config response.
user_info - object. Info about user.

* id -int. User ID.

+ login - string. User's login (in most cases it's an email address).

« title - string. User first and last name or organization title.

+ phone - string. User phone (if not empty).

« creation_date - date/time. User registration date/time.

* balance - float. User balance, max. 2 digits after dot. For sub-users, this field
should be ignored.

* bonus - float. User bonus, max. 2 digits after dot. For sub-users, this field
should be ignored.

+ locale - enum. User locale, for example "en_EN".
* demo - boolean. true if thisis a demo user, false otherwise.

« verified - boolean. true if user email already verified.

* legal_type - enum. Can bed "legal_entity", "individual" or "sole_trader".

+ default_geocoder -enum. User's default geocoder. Can be "google", "yandex",
"progorod"”, "osm", or "locationiq".

* route_provider - enum. User's route provider. Can be "progorod"”, "google" or
"osrm".

* time_zone - enum. User timezone name.

* measurement_system - enum. User's measurement system "metric", "imperial”,

us", "metric_gal_us" or "nautical".

* tin - string. Taxpayer identification number aka "VATIN" or "INN".

+ iec - optional string. Industrial Enterprises Classifier aka "KPP". Used in Russia
for legal entities.

+ post_country - string. Country part of user's post address.

+ post_index - string. Post index or ZIP code.

+ post_region - string. Region part of post address (oblast, state, etc.).
* post_city - string. City from postal address.

* post_street_address - string. Street address.

* registered_country - string. Country part of user's registered address.
* registered_index - string. Index part of user's registered address.

* registered_region - string. Region part of user's registered address.
* registered_city - string. City from registered address.

* registered_street_address - string. User's registered address.

« first_name - string. User's or contact person first name.

* middle_name - string. User's or contact person middle name.

+ last_name - string. User's or contact person last name.

« legal_name - optional string. A juridical name.

* master - object. Returned only if current user is sub-user. All fields have same
meaning as in "user_info", but for master user's account.

* tariff_restrictions - tariff restrictions object, for more info see user/
get_tariff_restrictions.

+ allowed_maps - string array. List of allowed maps.
* premium_gis - boolean. true if a dealer has premium GIS tariff.
« features - string array. Set of allowed Dealer features.

* privileges - object only returned for sub-users. Describes effective sub-user
privileges.

* rights - string array. A set of rights granted to sub-user. Described in security
group rights.

APl actions

API path: /user.

activate

Activates previously registered user with the provided session hash (it is contained in
activation link from email sent to user). Available only to master users.

. Attention

This call will receive only session hash from registration email. Any other hash will
result in result error code 4 (User or API key not found or session ended). The only thing
that API calls with a user session will work for is creating, reading, and deleting API
keys.

response

{ "success": true }

auth
Tries to authenticate user and get hash.

It does not need authentication/hash and is available at UNAUTHORIZED access level.

| . We recommend using API keys instead of user session hash.

parameters

description type restrictions

login User email as login (or demo login). string not null.

password User password. string not null, 1 to 40
printable
characters.

dealer_id If specified, API will check that user int optional.

belongs to this dealer, and if not,
error 102 will be returned.

../../../how-to/get-api-key/

example

cURL

curl -X POST 'https://api.navixy.com/v2/user/auth' \
-H 'Content-Type: application/json' \
-d '{"login": "user@email.com", "password": "12@14YS$"}'

response

"success": true,
"hash": "22eac1c27af4be7b9d04da2celaf111b"”

* hash - string. Session hash.
errors

+ 11 — Access denied - if dealer blocked.
+ 102 — Wrong login or password.
+ 103 — User not activated.

+ 104 - Logins limit exceeded, please reuse existing sessions instead (see also user/
session/renew).

+ 105 - Login attempts limit exceeded, try again later.

get_info

Gets user information and some settings.

parameters
name description type restrictions
application If specified, the response will contain a string optional

description of the application's custom
menu

examples

cURL

curl -X POST 'https://api.navixy.com/v2/user/get_info' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/user/get_info?
hash=a6aa75587e5c59¢c32d347da438505fc3

response

"success": true,
"paas_id": 7,
"paas_settings": <paas_settings>,
"user_info": {
"id": 43568,
"login": "demo@navixy.com",
"title": "John Smith",
"phone": "79123456789",
"creation_date": "2016-05-20 01:10:34",
"balance": 74.31,

"bonus": 9,
"locale": "en_US",
"demo" : true,
"verified" : true,
"legal_type" : "individual",
"default_geocoder": "google",
"route_provider": "google",
"time_zone": "America/New_York",
"measurement_system" : "metric",
"tin": "2345678239",
"iec": "",
"post_country": "USA",
"post_region": "NY",
"post_index": "10120",
"post_city": "New York",
"post_street_address": "1556 Broadway, suite 416",
"registered_country": "USA",
"registered_region": "NY",
"registered_index": "10120",
"registered_city": "New York",
"registered_street_address": "1556 Broadway, suite 416",
"first_name": "John",
"middle_name": "Walker",
"last_name": "Smith",
"legal_name": "QWER Inc."

b

"master": {

"id": 1234,

"demo" : false,
"legal_type": "individual",
"first_name": "David",

"middle_name": "Middle",

"last_name": "Blane",
"legal_name": "Blah LLC",
"title": "David Blane",

"balance": 0.0,
"bonus": 89.78
})

"tariff_restrictions": {
"allowed_maps": ["roadmap", "osm"]

be
"premium_gis": true,
"features": ["branding_web"],
"“privileges": {

"rights": ["tag_update"]
be

"menu": <customizable_user_menu>
* user_object - for more info see user object structure.

errors

+ General types only.

get_tariff_restrictions
Gets user tariff restrictions.
parameters

Only APl key hash .
examples

cURL

curl -X POST 'https://api.navixy.com/v2/user/
get_tariff_restrictions' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d0@4da2celaf111b"}"'

HTTP GET
https://api.navixy.com/v2/user/get_tariff_restrictions?

hash=a6aa75587e5c59¢32d347da438505fc3

response

"success": true,
"value": {
"allowed_maps": ["roadmap", "osm"]

* allowed_maps - string array. List of allowed maps.
errors

+ General types only.

logout

Destroys current user session. Works only with standard user session (not with API
key).

parameters
Only session hash .
examples

cURL

curl -X POST 'https://api.navixy.com/v2/user/logout' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b"}"’

HTTP GET

https://api.navixy.com/v2/user/logout?
hash=a6aa75587e5c59c32d347da438505fc3

response
{ "success": true }

errors

+ General types only.

resend_activation
Sends a new activation link to user.

It does not need authentication/hash and is available at UNAUTHORIZED access level.

parameters

name description type restrictions

login User login (email). string not null.
examples

cURL

curl -X POST 'https://api.navixy.com/v2/user/resend_activation' \
-H 'Content-Type: application/json' \
-d '"{"login": "user@login.com"}'

HTTP GET

https://api.navixy.com/v2/user/resend_activation?
login=user@login.com

response
{ "success": true }

errors

+ 201 - Not found in the database — user with a passed login not found.
+ 209 - Failed sending email — can't send email.

+ 264 - Timeout not reached — previous activation link generated less than 5 minutes
ago (or other configured on server timeout).

{
"success": false,
"status": {
"code": 264,
"description”: "Timeout not reached"
b
"timeout": "PT5M",
“remainder": "PT4M31.575S"
}

« timeout - string. timeout between sending activation links in ISO-8601 duration
format.

* remainder - string. remaining time to next try in ISO-8601 duration format

+ 265 - Already done — user already activated and verified.

Last update: October 6, 2023

User password

Contains API calls to change and set users' passwords.

APl actions

API path: /user/password.

change

Changes password of user with the provided session hash (it is contained in a
password restore link from email sent to user by user/restore_password).

. This call will receive only session hash from a password restore email. Any other
hash will result in result error code 4 (User or API key not found or session
ended).

parameters

name description type

password New password for the user. 6 to 20 printable characters. string

example

cURL

curl -X POST 'https://api.navixy.com/v2/user/password/change’ \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "password":
"12@014Y$"}"

response

{ "success": true }

errors

+ 101 — In demo mode this function disabled - if specified session hash belongs to
demo user.

set

Changes password for login user. Works only with standard user session (not with API
key).

parameters
name description type
old_password Current password of the user. string
new_password New password for the user. 6 to 20 printable characters. string
example
cURL

curl -X POST 'https://api.navixy.com/v2/user/password/set' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d64da2celaf111b",
"old_password": "qwert1", "new_password"': "12@14Y$"}'

response

{ "success": true }

errors

+ 101 - In demo mode this function disabled - if specified session hash belongs to
demo user.

+ 245 — New password must be different - if old_password = new_password .

+ 248 - Wrong password - if old_password is wrong.

Last update: December 26, 2022

User personal info

Contains user personal info update API call.

APl actions

API path: /user/personal_info.

update
Updates user personal info.
Require a plugin with id=45.

parameters

+ legal_type - string. Either "legal_entity", "sole_trader" or "individual".
« first_name - string. Contact person first name.
+ middle_name — string. Contact person middle name.
+ last_name - string. Contact person last name.
* phone - string. 0-15 digits. Optional. Contact phone. Not changes if not passed.
* post_country — string. Optional. Country part of user's post address.
* post_index — string. Optional. Index part of user's post address.
* post_region — string. Optional. Region part of user's post address.
* post_city — string. Optional. City from post address.
* post_street_address — string. Optional. User's post address,
and for legal_entity or sole_trader:
+ iec - string. Industrial Enterprises Classifier aka "KPP". Used in Russia. For
legal_entity only.
+ legal_name - string. User legal (juridical) name. For legal_entity only.

+ okpo_code - string, optional, 8 or 10 characters maximum. All-Russian Classifier of
Enterprises and Organizations. Used in Russia.

* registered_country - string. Country part of user's registered address.

* registered_index — string. Index part of user's registered address.

* registered_region — string. Region part of user's registered address.
* registered_city — string. City from registered address.
* registered_street_address — string. User's registered address.

+ state_reg_num - string, optional, 15 characters maximum. State registration
number. E.g. EIN in the USA, OGRN in Russia.

« tin — string. Taxpayer identification number.
example

cURL

curl -X POST 'https://api.navixy.com/v2/user/personal_info/update’
\

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "first_name":

“"Charles", "middle_name": "Henry", "last_name": "Pearson",
"legal_type": "legal_entity", "phone": "491761234567",
"post_country": "Germany", "post_index": "61169", "post_region":
"Hessen", "post_city": "Wiesbaden", "post_street_address":
"Marienplatz 2", "registered_country": "Germany",
"registered_index": "61169", "registered_region": "Hessen",
"registered_city": "Wiesbaden", "registered_street_address":
"Marienplatz 2", "state_reg_num": "12-3456789", "tin":
"1131145180", "legal_name": "E. Biasi GmbH", "iec": "",
"okpo_code": ""}'

response

{ "success": true }

errors

+ 222 - Plugin not found — when plugin 45 not available for user.

Last update: December 26, 2022

User audit

Contains user audit check-in method that calls when user opens Ul.

APl actions

APl path: /user/audit .

checkin

This method calls when user opens Ul. Works only with standard user session (not with
API key).

parameters
Only session hash .
examples

cURL

curl -X POST 'https://api.navixy.com/v2/user/audit/checkin"' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d0@4da2celaf111b"}"

HTTP GET

https://api.navixy.com/v2/user/audit/checkin?
hash=a6aa75587e5c59c32d347da438505fc3

response
{
"success": true
}
errors

+ General types only.

Last update: July 19, 2022

User audit log

Using the audit log, account owner can track the activity of all users added through the
"Access rights" section. Contains audit object and list method to get the audit log.

Audit object

"id": 44504790,
"user_id": 3,
"subuser_id": 184541,

"entry_category": "custom_field",
"entry_id": null,
"action": "create",
"payload": {
"name": "Decimal number"

H
"host": "94.140.138.215",

"user_agent": "Apache-HttpClient/4.1.1 (java 1.5)",
"action_date": "2020-12-21 17:54:01"

* id -int. An ID of the audit record.

+ user_id -int. Master user's ID.

* subuser_id -int. ID of the sub-user who made an action.

* entry_category - string. Category of the entry on which an action made.
* entry_id -int. ID of the entry on which an action made. Nullable.

* action - string. Action on entry.

+ payload - Nullable JSON object. Additional information about action.

* host - string. Host from which an action made. IPv4 or IPv6.

* user_agent - string. User agent.

« action_date - date/time. Date and time of the action.

APl actions

API path: /user/audit/log.

list
Gets list of audit records available for current user.

required sub-user rights: admin (available only to master users).

parameters

description type
from Include audit objects recorded after this date. date/
time
to Include audits before this date. date/
time
subuser_ids Optional. Include audits for specific sub-users. int
array
actions Optional. Include audits for specific actions only. string
array
limit Pagination. Maximum number of audit records to return. int
offset Pagination. Get audits starting from. int
sort Optional. Set of sort options. Each option is a pair of string
property name and sorting direction, e.g. array
["action_date=acs", "user=desc"].
grouping Optional. Group log by "user”, "action_date", "action" or enum

don't group "default".

Properties available for sorting by:

* action.

« action_date - sort only by date, not considering time part.

* action_datetime - sort by date including time.

* user -sort by user's (sub-user) last+first+middle name, not by ID.

* host . If no sort param is specified, then sorting equivalent to option
["action_date=asc"] will be applied.

example

cURL

curl -X POST 'https://api.navixy.com/v2/user/audit/log/list'
-H 'Content-Type: application/json' \

-d "{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "from":

"2020-12-25 ©3:24:00", "to": "2020-12-28 06:24:00", "limit":
"offset": 0}’
response
{
"success": true,
"list": [
{

"id": 44504790,
"user_id": 3,
"subuser_id": 184541,

"entry_category": "custom_field",
"entry_id": null,
"action": "create",
"payload": {
"name": "Decimal number"
bo

"host": "94.140.138.215"
"user_agent": "Apache-HttpClient/4.1.1 (java 1.5)",
"action_date": "2020-12-21 17:54:01"

errors

+ General types only.

Last update: December 26, 2022

\

50,

User session

Contains a call to prolong user session.

APl actions

API| path: /user/session.

renew

Prolongs current user session. Works only with standard user session (not with API
key).

parameters
Only session hash .
examples

cURL
curl -X POST 'https://api.navixy.com/v2/user/session/renew' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d0@4da2celaf111b"}"
HTTP GET
https://api.navixy.com/v2/user/session/renew?
hash=a6aa75587e5c59c32d347da438505fc3

response

{ "success": true }

Last update: August 1, 2023

Delivery

Calls to work with "delivery" type sessions. Those are special sessions to integrate
order (task) tracking functionality into external systems.

APl actions

APl path: /user/session/delivery .

create

Creates new user delivery session. In demo session allowed to create a new session
only if it not already exists.

required sub-user rights: admin (available only to master users).
parameters

Only APl key hash .

examples

cURL

curl -X POST 'https://api.navixy.com/v2/user/session/delivery/
create' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/user/session/delivery/create?
hash=a6aa75587e5¢c59c32d347da438505fc3

response

"success": true,
"value": "42fc7d3068cb98d233c3af749deed4a8d"

+ value - string. Created delivery session hash key.

errors

+ 101 - In demo mode this function disabled — current session is demo but
weblocator session already exists.

+ 236 — Feature unavailable due to tariff restrictions.

read

Returns current user delivery session key.
parameters

Only API key hash.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/user/session/delivery/read’

\
-H 'Content-Type: application/json' \
-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/user/session/delivery/read?
hash=a6aa75587e5c59¢c32d347da438505fc3

response

"success": true,
"value": "42fc7d3068cb98d233c3af749deed4a8d"”
+ value - string. Delivery session hash.

errors

+ 201 — Not found in the database - if there is no delivery session.

errors

+ General types only.

Last update: July 19, 2022

Push token

Contains API calls to interact with push token.

Find information about push token usage in our instructions.

APl actions

APl path: /user/session/push_token.

bind

Binds Push token with a current session.

parameters

name description

application Application ID, "navixy_iphone_viewer" or
"navixy_android_viewer" or "w3c_pushapi".

token Push token or endpoint from pushSubscription, full
URL like https://fcm.googleapis.com/fcm/send/
fékicrBn7S0:APA91b if your app ID is " "

parameters Should be used only with object with "w3c_pushapi".

Contain keys from pushSubscription {"p256dh": "...",
"auth":"..."}

category_filter Optional. Push notifications category filter, default is

* .

type

enum

string

JSON
object

string

../../../../../how-to/getting-pushes/
https://fcm.googleapis.com/fcm/send/f6kicrBn7S0:APA91b
https://fcm.googleapis.com/fcm/send/f6kicrBn7S0:APA91b

example

cURL

curl -X POST 'https://api.navixy.com/v2/user/session/push_token/
bind"' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b",
"application": "navixy_android_viewer", "token":
"f4be7b9d04da2celaf111b" }’

response
{ "success": true }

Using category_filter you can filter out unwanted notifications categories.
If category_filter equalsto * this means all categories allowed.

Delimited with comma list means that allowed only listed categories i.e.

chat_message, history_rule.

Prepended with minus and delimited with comma list means that all categories allowed
except giveni.e. — history_task,history_rule.

POSSIBLE CATEGORIES:

« chat_message — notification about new chat message.

« history_rule - notifications related to rule actuation.

* history_task — notifications related to tasks.

* history_info — service information.
* history_service_task — service task notifications.

* history_work_status — work status notifications.
errors

* General types only.

delete
Deletes push token bound with the session.
parameters

Only session hash .

examples

cURL

curl -X POST 'https://api.navixy.com/v2/user/session/push_token/
delete' \

-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"’

HTTP GET

https://api.navixy.com/v2/user/session/push_token/delete?
hash=a6aa75587e5c59c32d347da438505fc3

response
{ "success": true }

errors

General types only.

Last update: August 1, 2023

User sessions weblocator

Calls to work with "weblocator" type sessions. Those are special sessions to integrate
tracking device functionality into external systems.

APl actions

API path: /user/sessions/weblocator .

create

Creates a new user weblocator session. In demo session allowed to create a new
session only if it not already exists.

required sub-user rights: admin (available only to master users).
parameters

Only APl key hash .

examples

cURL

curl -X POST 'https://api.navixy.com/v2/user/session/weblocator/
create' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/user/session/weblocator/create?
hash=a6aa75587e5c59c32d347da438505fc3

response

"success": true,
"value": "42fc7d3068cb98d233c3af749deed4a8d"

+ value - string. Created session hash key.

errors

+ 101 - In demo mode this function disabled — current session is demo but
weblocator session already exists.

+ 236 — Feature unavailable due to tariff restrictions.

read

Returns current user weblocator session key.
parameters

Only API key hash.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/user/session/weblocator/

read' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/user/session/weblocator/read?
hash=a6aa75587e5c59¢c32d347da438505fc3

response

"success": true,
"value": "42fc7d3068cb98d233c3af749deed4a8d"”

+ value - string. Session hash key.

errors

+ 201 = Not found in the database - if there is no weblocator session.

Last update: July 19, 2022

User settings

CRUD actions for user settings.

settings object

"time_zone": "Europe/Amsterdam",
"locale": "nl_NL",
"measurement_system": "metric",
"geocoder": "osm",
"route_provider": "google",
"translit": false

time_zone - enum. ISO timezone ID.
locale - enum. Locale code.

measurement_system - enum. Measurement system. Can be "metric", "imperial",

’
non

"us”, "metric_gal_us" or "nautical".

geocoder -enum. Preferred geocoder type. Can be "google", "yandex", "progorod”,
"osm" or "locationiq".

route_provider - enum. Preferred route finding provider. Can be "google”,
"progorod” or "osrm".

translit - boolean. true if sms notification should be transliterated, false

otherwise.

balance_alert_settings type is JSON object:

"emails": ["emaill@example.com", "email2@example.com"]

emails - string array. List of emails to send alert message about balance. Empty

array means disclaimer of notifications.

file_storage_settings type is JSON object:

"auto_overwrite": true

« auto_overwrite - boolean. If true new files will replace old ones when file
storage is full. Default is false.

APl actions

API| path: /user/settings.

read

Reads current user's settings.
parameters

Only APl key hash.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/user/settings/read' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/user/settings/read?
hash=a6aa75587e5c59c32d347da438505fc3

response

"success": true,
"settings": {
"time_zone": "Europe/Amsterdam"”,
"locale": "nl_NL"
"measurement_system": "metric",
"geocoder": "osm",
"route_provider": "google",
"translit": false
b
"file_storage_settings": {
"auto_overwrite": true
b
"balance_alert_settings": {
"emails": ["emaill@example.com", "email2@example.com"]

b

"first_user_balance_warning_period": "7d",
"second_user_balance_warning_period": "2d"

« first_user_balance_warning_period - string. The first interval to send alert. "7d"
means send the first alert warning 7 days before.

* second_user_balance_warning_period - string. The second interval to send alert.
Send the second alert warning n days before.

* Where settings, balance_alert_settings and file_storage_settings
described above.

required sub-user rights for balance_alert_settings and file_storage_settings
fields: admin (available only to master users).

update
Update current user's settings.

required sub-user rights for balance_alert_settings and file_storage_settings:
admin (available only to master users).

parameters

description

time_zone ISO timezone ID. enum
locale Locale code. enum
measurement_system Measurement system. Can be "metric", enum

"imperial”, "us", "metric_gal_us" or "nautical".

geocoder Preferred geocoder type. Can be "google”, enum

"yandex", "progorod”, "osm" or "locationiq".

route_provider Preferred route finding provider. Can be enum

"google”, "progorod” or "osrm".

translit true if sms notification should be boolean
transliterated, false otherwise.

balance_alert_settings Object containing array of emails.

description

JSON
object

file_storage_settings Object containing file storage settings. JSON
object

example

cURL

curl -X POST 'https://api.navixy.com/v2/user/settings/update’ \
-H '"Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b", "time_zone":

"Europe/Amsterdam”, "locale": "nl_NL", "measurement_system":
"metric", "geocoder": "osm", "route_provider": "google",
"translit": false, "balance_alert_settings": {"emails":
["emaill@example.com”, "email2@example.com"]},

"file_storage_settings”: {"auto_overwrite": true}}’
response
{ "success": true }

errors

+ General types only.

file_storage/update
Updates current user's file storage settings.
required sub-user rights: admin (available only to master users).

parameters

description

file_storage_settings Object containing file storage settings. JSON object

example

cURL
curl -X POST 'https://api.navixy.com/v2/user/settings/file_storage/
update' \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b",
"file_storage_settings": {"auto_overwrite": true}}’

errors

+ 13 — Operation not permitted — if user has insufficient rights.

Last update: December 26, 2022

User Ul settings

The user interface settings intended for storing settings of client applications that use
the API. One can imagine that this works similarly to the browser cache/local storage
mechanism. The feature is that long-term storage of these settings provided but not
guaranteed - when the quota exceeded, data could be deleted.

APl actions

API path: /user/settings/ui.

read
Reads setting value by key.

parameters

name description type

key Length should be between 1 and 50 is 50 symbols, should only string
contain English letters, digits, _ and -.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/user/settings/ui/read’' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "key":
"tracker-icons"}'

responses:

{

"success": true,
"value": "previously saved value"

When nonexistent key provided:

{

"success": false,

"status": {
"code": 201,
"description”: "Not found in database"

}
}

errors

+ General types only.

update

Sets setting value.

parameters
name description type
key Length should be between 1 and 50 is 50 symbols, should only string
contain English letters, digits, _ and -.
value A new Ul config value. Length should be between 0 and 8192 string
symbols.
responses:

{ "success": true }

errors

+ General types.

+ 268 - over quota. The amount of storage available for the user for these settings
has been exhausted. New settings cannot be added until the amount of stored data
has been reduced.

Last update: December 26, 2022

Check-ins

Check-ins are created using Mobile Tracker App (Android / i0S). They contain date/
time, address, coordinates and additional information (comment, photo, filled form)
which is provided by app user after pressing the "Check-in" in the tracker app. Using
check-ins field personnel can provide information to their HQ while on site. For example,
provide photo proof of the work done, or notify about a malfunction along with filled
form describing the problem.

Check-ins cannot be created using web API (create is needed for exceptional cases and
described in how-tos), so all actions are read-only.

Check-in object

"id": 1,
"marker_time": "2017-03-15 12:36:27",
"user_id": 111,
"tracker_id": 222,
"employee_id": 333,
"location": {
"lat": 53.787154,
"lng": 9.757980,
"address": "Moltkestrasse 32",
"precision": 150
Ve
"comment": "houston, we have a problem",
"files": [{
"id": 16,
"storage_id": 1,
"user_id": 12263,
"type": "image",
"created": "2017-09-06 11:54:28",
"uploaded": "2817-09-06 11:55:14",
"name": "lala.jpg",
"size": 72594,
"mime_type": "image/png",
"metadata": {
"orientation": 1
b
"state": "uploaded",
"download_url": "https://static.navixy.com/file/d1l/1/0/1g/
01gw2j5q7nm4r92dytolzdékoxy9e38v.png/lala. jpg"

H,
"form_id": 23423,

https://play.google.com/store/apps/details?id=com.navixy.xgps.tracker&hl=ru
https://apps.apple.com/us/app/x-gps-tracker/id802887190
../../../how-to/how-to-create-checkins-via-api/

"form_label": "Service request form"

« id -int. An ID of a check-in.
* marker_time - date/time. Non-null. The time of check-in creation.
* user_id -int. Non-null. An ID of the master user.
* tracker_id -int. Non-null. An ID of the tracker which created this check-in.
« employee_id - optional int. An ID of the employee assigned to the tracker.
+ location - non-null object. Location associated with this check-in marker.
+ address - string. Address of the location.
+ comment - optional string. A comment provided by app user.
« files - list of objects. Non-null. May be empty.
+ id -int. File ID.
* storage_id -int. Storage ID.
* user_id -int. An ID of the user.
* type - enum. Can be "image" | "file".
* created - date/time. Date when file created.

* uploaded - date/time. Date when file uploaded, can be null if file not yet
uploaded.

* name - string. A name of the file.

+ size int. File size in bytes. If file not uploaded, show maximum allowed size for
an upload.

* metadata - metadata object.
« orientation -int. Image exif orientation.

* state - enum. Can be "created" | "in_progress" | "uploaded" | "deleted".

* download_url - string. Actual URL at which file is available. Can be null if file
not yet uploaded.

« form_id -int. An ID of the form which was sent along with a check-in, can be null.

« form_label - string. Label of the form which was sent along with a check-in, can be
null.

APl actions

API path: /checkin.

read
Get check-in which ID is equal to checkin_id.
required sub-user rights: employee_update.

parameters

description

checkin_id ID of the check-in entry. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/checkin/read' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "checkin_id":
1}

HTTP GET

https://api.navixy.com/v2/checkin/read?
hash=a6aa75587e5¢c59¢c32d347da438505fc3&checkin_id=1

response

"success": true,
"value": {
"id": 1,
"marker_time": "2017-03-15 12:36:27",
"user_id": 111,
"tracker_id": 222,
"employee_id": 333,
"location": {
"lat": 53.787154,
"lng": 9.757980,

"address": "Moltkestrasse 32",
"precision": 150

b

"comment": "houston, we have a problem",
"files": [{

"id": 16,

"storage_id": 1,

"user_id": 122063,

"type": "image",

"created": "2017-09-06 11:54:28",
"uploaded": "20817-09-06 11:55:14",
"name” : "lala.jpg",

"size": 72594,

"mime_type": "image/png",

"metadata”: {
"orientation”: 1
b
"state": "uploaded",
"download_url": "https://static.navixy.com/file/d1/1/0/1g/
01gw2j5q7nm4r92dytolzdékoxy9e38v.png/lala. jpg"

H,
"form_id": 23423,
"form_label": "Service request form"
}
}
errors

+ 7 — Invalid parameters.

+ 204 - Entity not found — when the marker entry is not exists.

list
Gets marker entries on a map for trackers and for the specified time interval.
required sub-user rights: employee_update .

parameters

description type

trackers Optional. Array of tracker IDs. All trackers must int array
not be deleted or blocked (if list_blocked=false).
If not specified, all available trackers will be
used as value.

from Optional. Start date/time for searching. date/time

to Optional. End date/time for searching. Must be date/time
after "from" date.

conditions Optional. Search conditions to apply to list. See string array
Search conditions. Allowed fields are

employee, location, marker_time, comment .

sort Optional, offset, default is 0. List of sort string array
expressions. See below.

../../commons/entity/search_conditions/

name description

location Optional, location with radius, inside which
check-ins must reside.

limit Optional. Max number of records to return.

offset Optional, offset (starting index of first returned

record), default is 0.

format Optional. If empty, JSON will be returned.
Otherwise server will return file download in
specified format. Can be "pdf" or "xIsx".

CONDITION FIELDS

Name Type Comment

employee number ID

tracker_id number

marker_time DateTime

location string address
comment string

form number template's ID

SORT

type

Location JSON. For
example,

{ "lat"
53.787154,

"lng": 9.757980,
"radius": 350 }

int

int

string

It's a set of sort options. Each option is a pair of field name and sorting direction, e.g.

["location=asc", "employee=desc", "marker_time=desc"].

SORT FIELDS

Comment

employee string full name

tracker_id number

marker_time DateTime

location string address

comment string

form string label
example

cURL

curl -X POST 'https://api.navixy.com/v2/checkin/list"' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "trackers":
[616384,345623], "from": "2020-08-85 03:06:00", "to": "2020-89-05
03:00:00", "offset": 206, "limit": 100, "format": "xlsx"}'

response

"success": true,
"list": [<checkin>],
"count": 22

« list - list of check-in objects.

* count -int. Total number of check-ins (ignoring offset and limit).
errors

+ 7 — Invalid parameters.
+ 211 — Requested time span is too big.

+ 217 — The list contains non-existent entities — if one of the specified trackers does
not exist, is blocked or doesn't have required tariff features.

« 221 - Device limit exceeded - if device limit set for the user's dealer has been
exceeded.

delete
Deletes check-ins with the specified IDs.

required sub-user rights: checkin_update..

parameters
name description type
checkin_ids List of check-in IDs. int array
examples
cURL

curl -X POST 'https://api.navixy.com/v2/checkin/delete’ \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b",
"checkin_ids": [2132,4533]}"

HTTP GET

https://api.navixy.com/v2/checkin/delete?
hash=a6aa75587e5c59¢c32d347da438505fc3&checkin_ids=[2132,4533]

response
{
"success": true
}
errors

+ 7 — Invalid parameters.

+ 201 - Not found in the database - check-ins with the specified IDs don't exist, or
their corresponding trackers are not available to current sub-user.

Create

Creates a new check-in. Needed for exceptional cases.

required sub-user rights: checkin_update .

parameters

description

tracker_id ID of the tracker. Tracker must belong to authorized int
user and not be blocked.

location Location coordinates (see: data types description JSON
section section). object
comment Optional. string
file_ids Optional. IDs of files created by checkin/image/ int
create). array
form_submission Optional, only present when sending form along JSON
with check-in. If the form includes optional fields object

that should be left empty for your check-in, refrain
from adding these fields to the form submission
object.

where form_submission type is JSON object:

{
"form_id": <int>, // id of the form previously created with
checkin/form/create
"values": {
// map which contains values for form fields

}

examples

cURL

curl -X POST 'https://api.navixy.com/v2/checkin/create' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "tracker_id":
22, "location": { "lat": 9.861999, "lng": -83.948999 }, "comment":

"houston, we have a problem", "file_ids": [11, 22],
"form_submission": { "form_id": 23423, "values": {"111-aaa-
whatever": { "type": "text", "value": "John Doe" }} }}'

response

{

"success":
"id": 111

errors

true,

+ 7 — Invalid parameters.

+ 201 - Not found in the database - form with the specified IDs don't exist, or their

corresponding trackers are not available to current sub-user.

+ 242 - There were errors during content validation, if given values are invalid for the

form.

image/create

Creates an image for check-in. If you have multiple files to upload, be sure to add a brief

delay between uploading each one to ensure a smooth process.

parameters

description

size

filename

metadata

response

Maximum size in bytes for the file which will be uploaded. int
This is needed to "reserve" the space for a file in user's
disk space quota.

Optional. If specified, uploaded file will have the specified string
name. If not, name will be taken from actual file upload

form.

Optional. Metadata object (for images only). JSON

object

when using internal storage:

{

"success":
"value":

true,

"file_id": 111,

"url":

"http://bla.org/bla",

"expires": "2020-02-03 03:04:00",
"file_field_name": "file",

"fields": {
"token": "a43f43ed4340b86c808ac"

when using the Amazon S3:

{
"success": true,
"value": {
"file_id": 111,
"url": "https://bla.s3.amazonaws.com/",
"expires": "2020-02-03 03:04:00",
"file_field_name": "file",
"fields": {
"policy": "<Base64-encoded policy string>",
"key": "user/userl1/${filename}",
"success_action_status": "200",

“X-amz-algorithm": "AWS4-HMAC-SHA256",

"x-amz-credential": "AKIAIOSFODNN7EXAMPLE/26151229/us-east-1/
s3/aws4_request"”,

"x-amz-date": "20151229T000000Z",

"X-amz-signature": "<signature-value>",
"Xx-amz-server-side-encryption": "AES256",
"“content-type": "image/png"

}
}

« file_id - int. This value will be submitted as form's field value.
* url - string. A URL to which POST form-data with file contents should be executed.

« expires - date/time. After this date file record wil expire and upload requests will
be rejected.

« file_field_name - string. Name for file field in POST upload request.
+ fields -these fields should be passed as additional fields in POST multipart
upload request, field with a file must be the last one.

How to upload file data

Here's an example of upload you must make after receiving such response (assuming
you uploading image named actual_file_name.png):

Internal storage example:

POST /bla HTTP/1.1
Host: bla.org
Content-Length: 1325
Origin: http://bla.org
other headers

Content-Type: multipart/form-data; boundary=WebAppBoundary

--WebAppBoundary

Content-Disposition: form-data; name="token"
a43f43ed4340b86c808ac

--WebAppBoundary

Content-Disposition: form-data; name="file";
filename="actual_file_name.png"
Content-Type: image/png

contents of file goes here
--WebAppBoundary--

Amazon S3 example:

POST / HTTP/1.1
Host: https://bla.s3.amazonaws.com
Content-Length: 1972
Origin: https://bla.s3.amazonaws.com/
other headers
Content-Type: multipart/form-data; boundary=WebAppBoundary

--WebAppBoundary
Content-Disposition: form-data; name="policy"
Content-Type: text/plain

eyJleHBpcmFBaW9uIjogIjIwMjMtMDMtMjdUMjE6MTU6MZzYUuMDczWiIsImNvbmRpdGlvbn
--WebAppBoundary

Content-Disposition: form-data; name="key"

Content-Type: text/plain

nj9relvem52qpB1tOwv47wyk10zd309g/${filename}
--WebAppBoundary

Content-Disposition: form-data; name="success_action_status"
Content-Type: text/plain

200

--WebAppBoundary

Content-Disposition: form-data; name="x-amz-algorithm"
Content-Type: text/plain

AWS4-HMAC-SHA256

--WebAppBoundary

Content-Disposition: form-data; name="x-amz-credential"
Content-Type: text/plain

AKIAIBQ6SRB65EVSSRMA/20230327/eu-central-1/s3/aws4_request
--WebAppBoundary

Content-Disposition: form-data; name="x-amz-date"
Content-Type: text/plain

20230327T72100367Z

--WebAppBoundary

Content-Disposition: form-data; name="x-amz-signature”
Content-Type: text/plain

2df7efaBcBedc5b97d0d9483acd77¢c9ec37360df921b019a4c4a93180a6136ad
--WebAppBoundary

Content-Disposition: form-data; name="x-amz-server-side-encryption"
Content-Type: text/plain

AES256

--WebAppBoundary

Content-Disposition: form-data; name="file";
filename="actual_file_name.png"
Content-Type: image/png

contents of file goes here
--WebAppBoundary--

errors

+ 268 — File cannot be created due to quota violation.

+ 271 - File size is larger than the maximum allowed (by default 16 MB).

form/create

Creates a new form that can be attached to a check-in. Form always created on the
basis of form template.

parameters

description

tracker_id ID of the tracker. Tracker must belong to authorized user and int
not be blocked.

template_id ID of the form template. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/checkin/form/create’' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d04da2celaf111b", "tracker_id":
22, "template_id": 12548}’

HTTP GET

https://api.navixy.com/v2/checkin/form/create?
hash=a6aa75587e5c59c32d347da438505fc3&tracker_id=22&template_id=12548

response

{
"success": true,
"id": 23423
}
errors

+ 201 — Not found in the database - if there is no template with such an ID.

form/file/create

Creates a new file entry associated with form's field. If you have multiple files to upload,
be sure to add a brief delay between uploading each one to ensure a smooth process.

parameters

name description type

checkin_id ID of the check-in to which form attached. int

form_id ID of the form. int

field_id ID of the form's field to which a new file should be string
attached.

size Maximum size in bytes for the file which will be int
uploaded. This is needed to "reserve" the space for a file
in user's disk space quota.

filename Optional. If specified, uploaded file will have the string
specified name. If not, name will be taken from actual file
upload form.

metadata Optional. Metadata object (for images only). JSON

object

+ Use only one parameter checkin_id or form_id.

examples

cURL
curl -X POST 'https://api.navixy.com/v2/checkin/form/file/create’' \
-H 'Content-Type: application/json' \

-d '{"hash": "22eacl1c27af4be7b9d04da2celaf111b", "checkin_id":
1, "field_id": "111-aaa-whatever", "size": 101}’

response
The response and update process are same to image/create.

« file_id - int. This value will be submitted as form's field value.
* url - string. A URL to which POST form-data with file contents should be executed.

« expires - date/time. After this date file record wil expire and upload requests will
be rejected.

« file_field_name - string. Name for file field in POST upload request.
+ fields -these fields should be passed as additional fields in POST multipart
upload request, field with a file must be the last one.
errors
+ 201 — Not found in the database - if there is no check-in with such an ID, or check-in
doesn't have form, or form has no field with such a field_id.

+ 231 - Entity type mismatch - if form field is not file-based, i.e. doesn't use file ID as
its value.

+ 267 - Too many entities - if there are 6 or more unsubmitted files already
associated with this form's field.

+ 268 - File cannot be created due to quota violation.

« 271 - File size is larger than the maximum allowed (by default 16 MB).

Last update: January 15, 2024

Departments

Department is essentially just a group of employees. They can be assigned to
departments by specifying non-null department_id .

Department object

{
"id": 222,
"label": "Drivers",
"location": {
"lat": 46.9,
"lng": 7.4,
"address": "Rosenweg 3",
"radius": 150
}
}

* id -int. An ID of department.
+ label - string. Name of department.

+ location - optional object. Location associated with these departments. Should be
valid or null.

* address - string. Address of the location.

* radius -int. Radius of location zone in meters.

APl actions

API base path: /department .

list

Gets all departments belonging to user.

../employee/

examples

cURL

curl -X POST 'https://api.navixy.com/v2/department/list'

-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"'

HTTP GET

https://api.navixy.com/v2/department/list?
hash=a6aa75587e5¢c59¢32d347da438505fc3

response
{
"success": true,
"list": [{
"id": 222,
"label": "Drivers",
"location": {
"lat": 46.9,
"lng": 7.4,
"address": "Rosenweg 3",
"radius": 150
}
}1
}
errors

+ 7 — Invalid parameters.

+ 217 — The list contains non-existent entities — if one of the specified trackers does

not exist, is blocked or doesn't have required tariff features.

+ 221 - Device limit exceeded - if device limit set for the user’s dealer has been

exceeded.

create
Creates a new department with specified parameters.
required sub-user rights: employee_update .

parameters

description type

\

department An department object without id field. JSON object

example

cURL

curl -X POST 'https://api.navixy.com/v2/department/create’ \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "department
{"label": "My Department"”, "location": {"lat": 46.9, "lng": 7.4,
"address": "Rosenweg 3", "radius": 50}}'

response

"success": true,
"id": 111
* id -int. An ID of the created department.
errors

+ 7 — Invalid parameters.

+ 217 - The list contains non-existent entities — if one of the specified trackers does
not exist, is blocked or doesn't have required tariff features.

« 221 — Device limit exceeded - if device limit set for the user’s dealer has been
exceeded.

update
Updates existing department with a new specified parameters.
required sub-user rights: employee_update .

parameters

name description type

department An department object. JSON object

example

cURL

curl -X POST 'https://api.navixy.com/v2/department/update’ \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "department":
{"id": 111, "label": "My Department", "location": {"lat": 46.9,
"lng": 7.4, "address": "Rosenweg 3", "radius": 50}}'

response

{ "success": true }

errors

+ 201 - Not found in the database - if there is no department with specified ID.

delete
Deletes department with the specified ID.
required sub-user rights: employee_update .

parameters

description

department_id An ID of the department. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/department/delete’' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b",
"department_id": 111}

HTTP GET

https://api.navixy.com/v2/department/delete?
hash=a6aa75587e5¢c59¢c32d347da4385065fc3&department_id=111

response

{ "success": true }

errors

+ 201 - Not found in the database - if there is no department with specified ID.

Last update: December 26, 2022

Working with employees and drivers

Employees and drivers used to represent people working at one's organization. They
can be linked with other entities such as trackers, vehicles, places, etc.

Employee object

"id": 222,
"tracker_id": null,
"first_name": "John",
"middle_name": "Jane",
"last_name": "Smith",
"email": "smith@example.com",
"phone": "442071111111",
"driver_license_number": "SKIMP487952HJ9GK 06",
"driver_license_cats": "C",
"driver_license_issue_date": "2008-01-01",
"driver_license_valid_till": "2618-61-01",
"hardware_key": null,
"icon_id" : 55,
"avatar_file_name": null,
"department_id": null,
"location": {
"lat": 52.5,
"lng": 13.4,
"address": "Engeldamm 18"
b
"personnel_number": "1859236",
"ssn": "123-45-6789",
"tags": [1,2]

* id -int. Internal ID. Can be passed as null only for "create" action.

« tracker_id -int. An ID of the tracker currently assigned to this employee or driver.
null means no tracker assigned.

« first_name - string. First name. Cannot be empty. Max 100 characters.

* middle_name - string. Middle name. Can be empty, cannot be null. Max 100
characters.

« last_name - string. Last name. Can be empty, cannot be null. Max 100 characters.

+ email - string. Employee's email. Must be valid email address. Can be empty,
cannot be null. Max 100 characters.

* phone - string. Employee's phone without "+" sign. Can be empty, cannot be null.
Max 32 characters.

* driver_license_number - string. Driver license number. Can be empty, cannot be
null. Max 32 characters.

« driver_license_cats - string. Driver license categories. Max 32 characters.

« driver_license_issue_date - string date (yyyy-MM-dd). Issue date of a driver
license. Can be null.

« driver_license_valid_till - string date (yyyy-MM-dd). Date till a driver license
valid. Can be null.

* hardware_key - string. A hardware key. Can be null. Max 64 characters.
« icon_id -int. Anicon ID. Can be null, can only be updated via avatar/assign.

« avatar_file_name - string. A name of the updated avatar file. Nullable, can only be
updated via avatar/upload.

+ department_id - int. An ID of the department to which employee assigned. Can be
null.

+ location - optional object. Location associated with this employee, should be valid
or null.

* address - string. Address of the location.
* personnel_number -optional string. Max length is 15.
+ ssn - optional string. Social Security number. Max length is 32.

* tags -int array. List of tag IDs.

APl actions

APl base path: /employee.

list
Gets all employees and drivers belonging to user.

parameters

description

limit Pagination. Maximum number of employee records to return. int

description

offset Pagination. Get employee records starting from. int
sort Optional. Set of sort options. Each option is a pair of property string
name and sorting direction, e.g. array

["first_name=desc", "object_label=acs"] . Maximum 2
options in request. Available properties:
- 1D
- first_name
- object_label
- department_label
- personnel_number
- hardware_key
- phone
- email
- address
- driver_license_number
- driver_license_cats
- driver_license_valid_till
- driver_license_valid_till
-ssn

filter Get a list of employees filtered by properties, at least one string
property must contain the desired string. All properties from the
sorting list are used in filtering. Maximum 100 characters or
null.

examples

cURL

curl -X POST 'https://api.navixy.com/v2/employee/list' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b"}"'

HTTP GET
https://api.navixy.com/v2/employee/list?

hash=a6aa75587e5c59¢32d347da438505fc3

response

"success": true,
"list": [<employee>],

"count": 12

+ list - alist of employees.

+ count - int. Total number of employees (ignoring offset and limit).
errors

General types only.

create
Creates a new employee/driver.
required sub-user rights: employee_update.

parameters

description

employee An employee object without id field. Non-null. JSON object

example

cURL

curl -X POST 'https://api.navixy.com/v2/employee/create’ \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "employee":

{"tracker_id": 625987, "first_name": "John", "middle_name":
"Jane", "last_name": "Smith", "email": "smith@example.com",
"phone": "4420671111111", "driver_license_number":
"SKIMP407952HJ9GK ©6", "driver_license_cats": "C",
"driver_license_valid_till": "2018-01-081", "hardware_key": null,
"icon_id" : 55, "avatar_file_name": null, "department_id": null,

"location": {"lat": 52.5, "lng": 13.4, "address": "Engeldamm 18"},
"personnel_number": "1059236", "tags": [1,2]}'

response

"success": true,
"id": 111

+ id -int. An ID of the created employee (driver).

errors

+ 247 - Entity already exists, if tracker_id !=null and exists an employee that already
bound to this tracker_id.

read
Gets employee/driver by his ID.

parameters

description

employee_id ID of an employee. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/employee/read"' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b",
"employee_id": 111}"'

HTTP GET
https://api.navixy.com/v2/employee/read?

hash=a6aa75587e5c59c32d347da438505fc3&employee_id=111

response

"success": true,
"value": {

"id": 222,

"tracker_id": null,
"first_name": "John",
"middle_name": "Jane",
"last_name": "Smith",
"email": "smith@example.com",

"phone": "442671111111",
"driver_license_number": "SKIMP407952HJ9GK 06",
"driver_license_cats": "C",
"driver_license_issue_date": "2008-01-061",
"driver_license_valid_till": "2018-81-061",
"hardware_key": null,

"icon_id" : 55,

"avatar_file_name": null,

"department_id": null,

"location": {

"lat": 52.5,
"lng": 13.4,
"address": "Engeldamm 18"

Vo

"personnel_number": "1059236",
"ssn": "123-45-6789",

"tags": [1,2]

+ value - an employee object.
errors

+ 201 - Not found in the database - if there is no employee/driver with such an ID.

update
Updates existing employee/driver.
required sub-user rights: employee_update.

parameters

description

employee An employee object with id field. Non-null. JSON object

example

cURL

curl -X POST 'https://api.navixy.com/v2/employee/update’ \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "employee":
{"employee_id": 111, "tracker_id": 625987, "first_name": "John",
"middle_name": "Jane", "last_name": "Smith", "email":
"smith@example.com", "phone": "4420671111111",
"driver_license_number": "SKIMP407952HJ9GK 06",
"driver_license_cats": "C", "driver_license_valid_till":
"2018-01-01", "hardware_key": null, "icon_id" : 55,
"avatar_file_name": null, "department_id": null, "location":
{"lat": 52.5, "1lng": 13.4, "address": "Engeldamm 18"},
"“personnel_number": "1059236", "tags": [1,2]}'

response

{ "success": true }

errors

+ 201 - Not found in the database - if there is no employee/driver with such an ID.

+ 247 - Entity already exists, if tracker_id !=null and exists an employee that already
bound to this tracker_id.

delete
Deletes an employee/driver with the specified ID.

required sub-user rights: employee_update.

parameters
name description type
employee_id ID of an employee (driver) to delete. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/employee/delete’ \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b",
"employee_id": 111}"'

HTTP GET

https://api.navixy.com/v2/employee/delete?
hash=a6aa75587e5c59c32d347da438505fc3&employee_id=111

response
{ "success": true }

errors

+ 201 — Not found in the database - if there is no employee/driver with such an ID.

batch_convert

Converts batch of tab-delimited employees/drivers and returns list of checked
employees/drivers with errors.

Required sub-user rights: employee_update .

parameters

description

batch Batch of tab-delimited employees/drivers. string

file_id Preloaded file ID. string

fields Optional. Array of field names. Default is string
["first_name", "middle_name", "last_name", array
"email"”, "phone"].

geocoder Geocoder type. string

default_radius Optional. Radius for point in meters. Default is 100. int

«If file_id is set — batch parameter will be ignored.

response

"success": true,

"list": [{
"success": true,
"value": {

"id": 222,

"tracker_id": null,
"first_name": "John",
"middle_name": "Jane",
"last_name": "Smith",
"email": "smith@example.com",

"phone": "4420671111111",
"driver_license_number": "SKIMP407952HJ9GK 06",
"driver_license_cats": "C",
"driver_license_issue_date": "2008-01-01",
"driver_license_valid_till": "2018-61-061",
"hardware_key": null,
"icon_id": 55,
"avatar_file_name": null,
"department_id": null,
"location": {

"lat": 52.5,

"lng": 13.4,

"address": "Engeldamm 18"
b
"personnel_number": "1059236",
"ssn": "123-45-6789",

"errors": <array_of_objects>
}
H

"limit_exceeded": false

« list - list of checked employees/drivers.
« errors - optional array of errors.

+ limit_exceeded - boolean. true if given batch constrained by a limit.
errors

* 234 - Invalid data format.

Last update: October 6, 2023

Changing avatar

Avatars can't be changed through /employee/update, you must use either assign (to
set avatar to one of preset icons), or upload (to upload your own image).

APl actions

API path: /employee/avatar .

assign

Assign icon_id (from standard icon set) to this employee/driver. The icon_id can be
null - this means that uploaded avatar should be used instead of icon.

required sub-user rights: employee_update.

parameters
name description type
employee_id ID of the employee/driver to whom the icon will assign. int
icon_id ID of the icon. int
examples
cURL

curl -X POST 'https://api.navixy.com/v2/employee/avatar/assign' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b",
"employee_id": 2132, "icon_id": 3654}

HTTP GET
https://api.navixy.com/v2/employee/avatar/assign?
hash=a6aa75587e5c59c32d347da438505fc3&employee_id=2132&icon_id=3654

response

{ "success": true }

errors

+ 201 — Not found in the database - when employee/driver with employee_id not
found.

upload

Uploads avatar image for specified employee/driver. Then it will be available from /
employee/avatars/ e.g. https://api.navixy.com/v2/static/employee/avatars/
abcdef123456789.png .

required sub-user rights: employee_update.
avatar_file_name returned in response and will be returned from /employee/list.

MUST be a POST multipart request (multipart/form-data), with one of the parts being an
image file upload (with the name file).

File part mime type must be one of:
* image/jpeg
* image/pjpeg
* image/png
* image/gif

* image/webp

parameters

description

employee_id ID of the employee/driver to whom the icon will assign. int
file Image file. string
redirect_target Optional. URL to redirect. If passed returns redirect to ? string
response=.
response
{

"success": true,

"value": "picture.png"

+ value - string. Uploaded file name.
errors

+ 201 — Not found in the database - when employee/driver with employee_id not
found.
+ 233 — No data file - if file part not passed.

+ 234 - Invalid data format - if passed file with unexpected mime type.

+ 254 - Cannot save file - on some file system errors.

Last update: December 26, 2022

Employee import

APl actions

API calls to import employees.

APl actions

API path: /employee/import/ .

start

Starting the background process of importing employees.

parameters
name description
filename Name of file preloaded with /data/spreadsheet/
parse
headers List of files' headers, see available fields above
user_headers Optional. List of user labels for headers

Available fields:

* first_name

* middle_name

* last_name

* email

* phone

* driver_license_number
* driver_license_cats

* driver_license_issue_date

type

string

string
array

string
array

* driver_license_valid_till
* hardware_key

* address

¢ lat

* 1ng

* radius

* personnel_number

* ssn

* tracker_label

* tags

+ undefined (if a meaning of a field is not known)

response

"success": true,
"id": <int>
example

cURL

curl -X POST "https://api.navixy.com/v2/employee/import/start" \
-H "Content-Type: application/json" \
--data-binary @- << EOF

{

"hash": "a6aa75587e5c59¢32d347da438505fc3",

"filename": "tmp-sheet6406571613016981796.tsv",

"headers": ["label", "model", "max_speed", "type", "subtype",
"reg_number", "fuel_grade", "fuel_tank_volume",
"free_insurance_policy_number", "free_insurance_valid_till",
"tracker_label", "tags"],

"user_headers": ["Model", "Max speed", "Type", "Subtype",
"Reg. number", "Fuel grade", "Fuel tank volume", "Free insurance
policy number", "Free insurance valid till", "Object", "Tags"]

}
EOF
errors

+ 15 - Too many requests (rate limit exceeded) - if too many imports in progress
+ 233 - No data file

« 234 - Invalid data format

+ 247 - Entity already exists - there is another identical import with the same file

read
Returns an import process with specified ID.

parameters

description type

process_id Process ID int

response

"success": true,
"value": {

"id": <int>,

"user_id": <int>,

"created": <date>,

“type": "Employee",

"params": {
"headers": [<string>, <string>,...] // List of files' headers

b

"filename": <string>, // Name of preloaded TSV.

"status": <string>, // created | in_progress | done | failed |

finished

"status_change_date": <date>,

"progress": {
"imported": <int>,
"failed": <int>,
"percent": <int>, // approximate percentage of processed
"processed_lines": <int>,
"warnings": [{line:<int>, error: <string>}], // first 25
"errors": [{line:<int>, error: <string>}], // first 25

example

cURL

curl -X POST "https://api.navixy.com/v2/employee/import/read" \

-H "Content-Type: application/json" \

-d '{"hash": "a6aa75587e5c59c32d347da438505fc3", "process_id":
1}

errors

+ 201 - Not found in database (if import is not found)

list

Returns the list of the user's employee import processes.

response
{
"“success" : true,
"list" : [{

"id": <int>,
"user_id": <int>,
"created": <date>,
"type": "Employee",
"params": {

"headers": [<string>, <string>,...] // List of files' headers

b

"filename": <string>, // Name of preloaded TSV.

"status": <string>, // created | in_progress | done | failed

"status_change_date": <date>,
"progress": {
"imported": <int>,
"failed": <int>,

"percent": <int>, // approximate percentage of processed

"processed_lines": <int>,

"warnings": [{line:<int>, error: <string>}], // first 25
"errors": [{line:<int>, error: <string>}], // first 25
}
})]
}
example
cURL

curl -X POST "https://api.navixy.com/v2/employee/import/list"
-H "Content-Type: application/json" \
-d '{"hash": "a6aa75587e5c59¢c32d347da438505fc3"}"

download_failed

\

Retrieve a file with lines that contained errors and did not pass validation.

parameters

name description type
process_id Process ID int
response

File (standard file download).
example

cURL

curl -X POST "https://api.navixy.com/v2/employee/import/
download_failed" \

-H "Content-Type: application/json" \

-d '"{"hash": "a6aa75587e5c59c32d347da438505fc3", "process_id"
7'

errors

+ 201 - Not found in database (if import is not found)

+ 204 - Entity not found (if file is not found)

Last update: October 6, 2023

About forms

Forms used to provide additional information, such as user's name, phone, delivery
date, etc. upon task completion or check-in from i0S/Android mobile tracker app. Forms
can be attached to tasks. If form attached to task, this task cannot be completed
without form submission.

« Each form must be created from template, read more at Templates
* For description of <form_field> and <field_value>, see Form fields and values

- Using web API, it's now possible to only attach/fill forms with tasks (checkin forms
are created through Android/iOS tracker applications). See Task form actions to use
forms with tasks.

Find comprehinsive information on forms usage in our instructions.

Form object

"id": 2,
"label": "Order form",
"fields": [
{
"id": "111-aaa-whatever",
"label": "Name",
"description”: "Your full name",
"required": true,
"min_length": 5,
"max_length": 255,
"type": "text"
}

1,
“created": "2017-03-15 12:36:27",

"submit_in_zone": true,
"task_id": 1,
"template_id": 1,
"values": {
"111-aaa-whatever": {
"type": "text",
"value": "John Doe"
}

})
"submitted": "2017-03-21 18:40:54",

"submit_location": {
“lat": 11.0,
"lng": 22.0,
"address": "Wall Street, NY"

template/
field-types/
../task/form/
../../../how-to/forms-creation/

+ id -int. Form unique ID.
+ label - string. User-defined form label, from 1 to 100 characters.
« fields - array of multiple form_field objects.

* created - date/time. Date when this form created (or attached to the task). The
read-only field.

* submit_in_zone - boolean. If true, form can be submitted only in task zone.
« task_id -int. An ID of the task to which this form attached.

* template_id - int. An ID of the form template on which this form based. Can be null
if template deleted.

+ values - a map with field IDs as keys and field_value objects as values. Can be null
if form not filled.

+ key - string. Key used to link field and its corresponding value.
+ submitted - date/time. Date when form values last submitted.

« submit_location - location at which form values last submitted.

Form file object

"id": 16,

"storage_id": 1,

"user_id": 12203,

"type": "image",

"created": "2017-09-06 11:54:28",
"uploaded": "20817-09-06 11:55:14",
"name": "lala.jpg",

"size": 72594,

"mime_type": "image/png",
"metadata": <metadata_object>,
"state": "uploaded"”,

"download_url": "https://static.navixy.com/file/d1/1/0/1g/
01gw2j5q7nm4r92dytolzdékoxy9e38v.png/lala. jpg"
}
« id -int. File ID.
« type - enum. Can be "image" or "file".
« created - date/time. Date when file created.

* uploaded - date/time. Date when file uploaded. Can be null if file not yet uploaded.

field-types/
field-types/

* name - string. A filename.

+ size -int. Size in bytes. If file not uploaded, show maximum allowed size for the
upload.

+ metadata - nullable metadata object.
+ state - enum. Can be "created" | "in_progress" | "uploaded" | "deleted".

« download_url - string. Actual URL at which file is available. Can be null if file not
yet uploaded.

APl actions

API path: /form.

read
Gets form by an ID.

parameters

name description type

id ID of the form. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/form/read’' \
-H 'Content-Type: application/json' \
-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "id": 2}’

HTTP GET

https://api.navixy.com/v2/form/read?
hash=a6aa75587e5c59¢c32d347da438505fc3&id=2

response
{

"success": true,

"value": {
"id": 2,
"label": "Order form",
"fields": [

{

"id": "111-aaa-whatever",

"label": "Name",
"description": "Your full name",
"required": true,
"min_length": 5,
"max_length": 255,
"type": "text"
}

1,

"created": "2017-03-15 12:36:27",

"submit_in_zone": true,

"task_id": 1,

"template_id": 1,

"values": {

"111-aaa-whatever": {
"type": "text",
"value": "John Doe"

}

}
"submitted": "2017-03-21 18:40:54",

"submit_location": {
"lat": 11.0,
“lng": 22.0,
"address": "Wall Street, NY"
}
o
"files": [{
"id": 16,
"storage_id": 1,
"user_id": 12203,
"type": "image",
"created": "2017-09-06 11:54:28",
"uploaded”: "2017-09-066 11:55:14",
"name" : "lala.jpg",
"size": 72594,
"mime_type": "image/png",
"metadata": {
"orientation”: 1
Ve
"state": "uploaded",
"download_url": "https://static.navixy.com/file/d1/1/6/1g/
01gw2j5q7nm4r92dytolzdékoxy9e38v.png/lala. jpg"
}H
}

+ value - A form object.

« files - list of form_file objects. Files used in values of this form. Can be null or
empty.

errors

+ 201 — Not found in the database - if there is no form with such an ID.

download
Downloads form as a file by an ID.

parameters

description

id ID of the form. int

format File format. Can be "pdf" or "xIsx". enum
examples

cURL

curl -X POST 'https://api.navixy.com/v2/form/download' \

-H 'Content-Type: application/json' \

-d '"{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "id": 2,
"format": "pdf"}'

HTTP GET

https://api.navixy.com/v2/form/download?
hash=a6aa75587e5c59c32d347da438505fc3&id=2&format=pdf

response
Regular file download, or JSON with an error.
errors

+ 201 = Not found in the database - if there is no form with such an ID.

Last update: August 1, 2023

Form fields and values

Every form (and form template) contains an ordered list of fields of various types. Field
type defines how user input elements will look like, and how user input will be validated.

Every field has a set of common parameters, which are the same for all field types, and
type-specific parameters, which define specific style and validation constraints. Both
common and type-specific parameters contained as fields in the JSON object.

Field values for submitted form stored separately as JSON objects. The contents of
value JSON objects are entirely field type-specific.

COMMON FIELD PARAMETERS:

{
"id": "Text-1",
"label"”: "Name",
"description”: "Your full name",
"required": true,
“type": "text"
}

- id - arbitrary alphanumeric string (1 to 19 characters). Unique across current
form's fields, used to link with values and its "parent” in template form.

+ label - string. User-defined label, shown as field header, 1 to 100 printable
characters.

+ description - string. Field description, shown in smaller text under the header, 1 to
512 printable characters.

* required - boolean. If true, form cannot be submitted without filling this field
with valid value.

* type - string. Determines field type.

Text field
type: text.
Multiline auto-expanding text field.

Note 1: when value contains empty string, it's considered empty, and thus valid when
required: false, min_length != 0.

Note 2: combination required: true, min_length: @ is not allowed.

type-specific parameters:

"min_length": 5,
"max_length": 255

* min_length -int. Minimum allowed length, from 0 to 1024.

+ max_length -int. Maximum allowed length 1 to 1024.
value object:

"type": "text",
"value": "text field value"

+ value - string. What was entered the text field.

Checkbox group
type: checkbox_group.
Group of checkboxes.

Note 1: when zero checkboxes selected, values considered empty, and thus valid when
required: false, min_checked != 0.

Note 2: combination required: true, min_checked: @ is not allowed.

TYPE-SPECIFIC PARAMETERS:

{
"min_checked": 0,
"max_checked": 3,
"group": [{
"label" : "I agree to TOS"
]
}

* min_checked -int. Minimum allowed checked positions, 0 to "group".size - 1.

+ max_checked -int. Maximum allowed checked positions, 1 to "group”.size - 1.

VALUE OBJECT:

"type": "checkbox_group",

"values": [true]

+ values - array of boolean. They are in the same order as fields in group.

Dropdown field

type: dropdown .
Dropdown menu for choosing one option.

TYPE-SPECIFIC PARAMETERS:

{
"options": [
{
"label" : "John"
b
{
"label" : "Alice"
}
]
}
VALUE OBJECT:
{
"type": "dropdown",
"value_index": 1
}

* value_index - int. Zero-based index of value from "options".

Radio button group
type: radio_group.
A group of radio buttons. Only one option is selectable.

TYPE-SPECIFIC PARAMETERS:

{
"options": [
{
"label" : "John"
b
{

"label” : "Alice"

}
VALUE OBJECT:
{
"type": "radio_group",
"value_index": 1
}

* value_index - int. Zero-based index of value from "options".

Date picker
type: date.

A date picker.

TYPE-SPECIFIC PARAMETERS:

"disable_future": false,
"disable_past": true

* disable_future - boolean. If true, date from the future cannot be selected.

+ disable_past - boolean. If true, date from the past cannot be selected.

VALUE OBJECT:

"type": "date",
"value": "2017-03-14"

« value - date/time.

Rating
type: rating.
Rating with "stars". Zero stars not allowed.

TYPE-SPECIFIC PARAMETERS:

"max_stars": 5

* max_stars -int. Max number of stars to select from.

VALUE OBJECT:

"type": "rating",
"value": 3

« value -int. Number of stars selected. Cannot be more than max_stars.

File
type: file.
File attachment. For example, document or spreadsheet.

TYPE-SPECIFIC PARAMETERS:

{
"max_file_size": 65536,
"min_file_size": 128,
"allowed_extensions": ["x1s", "doc"]
}

+ max_file_size - int. Max file size, bytes, no more than 16 Mb.
* min_file_size - int. Minimum file size, bytes.

+ allowed_extensions - enum array. List of allowed file extensions, up to 16 items,
cannot be empty, but can be null, which means "no extension limits".

VALUE OBJECT:

"type": "file",
"file_ids": [3345345]

+ file_ids -int array. IDs of the file which should be attached to this form field as
value. Files must be uploaded before form submission.

Photo

type: photo.

Photograph attachment.

TYPE-SPECIFIC PARAMETERS:

{

"max_files": 2

}

+ max_files -int. Maximum number of photos to attach, up to 6.

VALUE OBJECT:

"type": "photo",
"file_ids": [3345345, 534534534]

« file_ids -int array. IDs of the files which should be attached to this form field as
value. Files must be uploaded before form submission. Only image files allowed.

Signature
type: signature.

A small image of customer's signature (usually obtained via writing on screen with a

stylus).
TYPE-SPECIFIC PARAMETERS:
« there are no type-specific parameters.

VALUE OBJECT:

"type": "file",
"file_id": 3345345

« file_id -int. An ID of the file which should be attached to this form field as value.
File must be uploaded before form submission.

Separator
type: separator.

Cosmetic, just to show header. Doesn't contain any actual value. Always filled and valid.
Cannot be required.

Last update: December 26, 2022

Form templates

Form is a "one-shot" entity; after it was filled by someone, it cannot be reused. It's
stored along with filled fields for future reference. Usually people need to fill forms with
the same fields over an over again, so forms created on the basis of form templates. It's
similar to paper forms: each paper form can be filled only once, but there's an electronic
document, a template, on basis of which all paper forms printed.

The reason for such API design is that template fields can be changed over time
(deleted, removed, reordered, etc.)

and it should not affect already filled forms. By separating filled forms and templates,
one can always view filled form in exactly same state regardless of how template
changed.

User can assign form to the task or checkin by choosing template without the need to
create all form fields every time.

Form template object

{
"id": 1,
"label": "Order form",
"fields":[{
"id": "Text-1",
"label": "Name",
"description”: "Your full name",
"required": true,
"type": "text",
"min_length": 5,
"max_length": 255
L
"“created": "2017-03-15 12:36:27",
"submit_in_zone": true,
"updated”: "2017-03-16 15:22:53",
"default": false

* id -int. An ID of a template.

+ label - string. User-defined template label, from 1 to 100 characters.

« fields - array of multiple form_field objects.

+ created - date/time. Date when this template created. The read-only field.

* submit_in_zone - boolean. If true, form can be submitted only in task zone.

../field-types/

+ updated - date/time. Date when this template last modified. The read-only field.

« default - boolean. This form will be chosen default for all new tasks with form if

true.

APl actions

API path: /form/template.

list
Gets all form templates belonging to current master user.
examples

cURL

curl -X POST 'https://api.navixy.com/v2/form/template/list' \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d04da2celaf111b"}"’

HTTP GET

https://api.navixy.com/v2/form/template/list?
hash=a6aa75587e5c59c32d347da438505fc3

response
{
"success": true,
"list":[{
"id": 1,
"label": "Order form",
"fields":[{

"id": "Text-1",
"label": "Name",
"description”: "Your full name",
“required": true,
“type": "text",
"min_length": 5,
"max_length": 255
H,

"created": "2017-03-15 12:36:27",

"submit_in_zone": true,

"updated": "2817-83-16 15:22:53",

"default": false

}]

+ list - ordered array of form_template objects.

errors

General types only.

Create
Creates new form template.

required sub-user rights: form_template_update .

parameters
name description type
template Non-null form template object without id, created, JSON
updated fields. object
example
cURL

curl -X POST 'https://api.navixy.com/v2/form/template/create’ \

-H 'Content-Type: application/json' \

-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b", "template":
{"label": "Order form", "fields": [{"id": "Text-1", "label":
"Name", "description”: "Your full name", "required": true, "type":
"text", "min_length": 5, "max_length": 255}], "submit_in_zone":
true, "default": false}}'

response

"success": true,
"id": 111

* id -int. An ID of the created form template.
errors

+ 101 - In demo mode this function disabled - if current user has "demo" flag.

read

Gets form template belonging to current master user by specified ID.

parameters

description

template_id ID of the form template. int

examples

cURL

curl -X POST 'https://api.navixy.com/v2/form/template/read’ \
-H 'Content-Type: application/json' \
-d '{"hash": "22eac1c27af4be7b9d@4da2celaf111b",
"template_id": 111}"'

HTTP GET

https://api.navixy.com/v2/form/template/read?
hash=a6aa75587e5c59c32d347da438505fc3&template_id=111

response
{
"success": true,
"list":[{
"id": 1,
"label": "Order form",
"fields": [{

"id": "Text-1",

"label": "Name",

"description": "Your full name",
"required": true,

"type": "text",

"min_length": 5,

"max_length": 255

Bl
"created": "2017-03-15 12:36:27",

"submit_in_zone": true,
"updated": "2017-03-16 15:22:53",
"default": false

}H

« list - ordered array of form_template objects.

errors

+ 201 - Not found in the database - if there is no template with such